### FEBRUARY 2023 EXAMINATION I B.E. (4YDC) EXAM

CE 10013 CE-10003: FUNDAMENTALS OF CIVIL ENGINEERING & APPLIED MECHANICS
Time: 3 Hrs.]

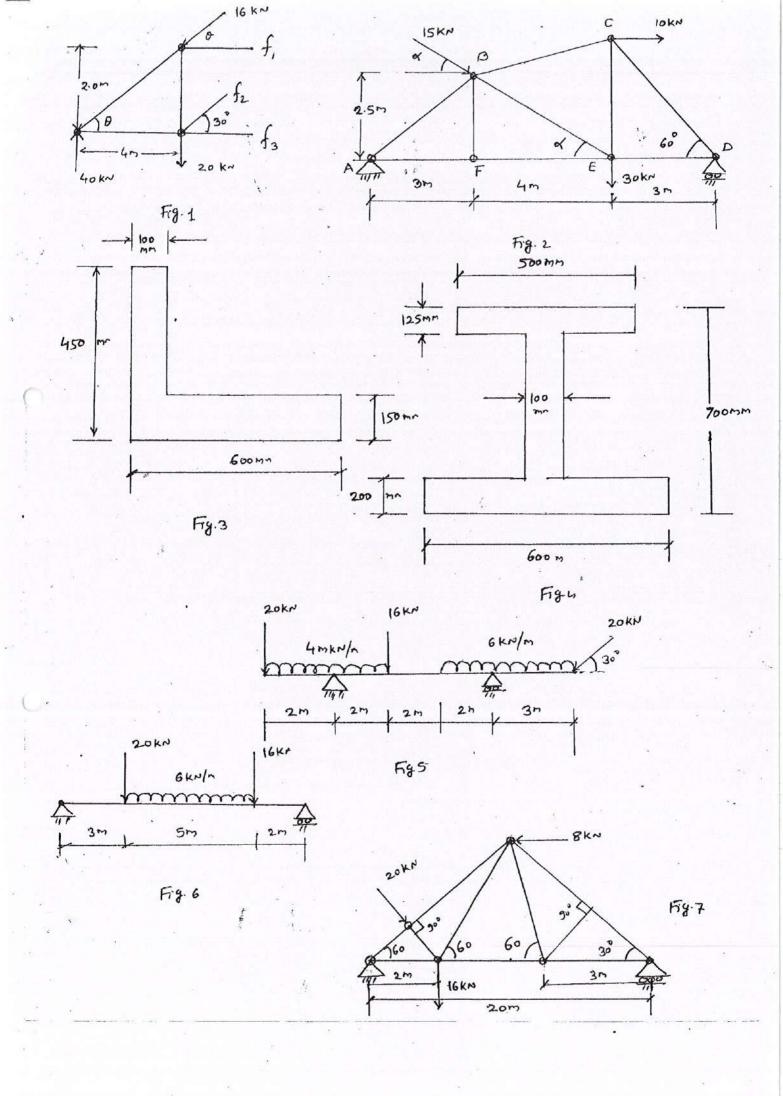
Max. Marks: 70

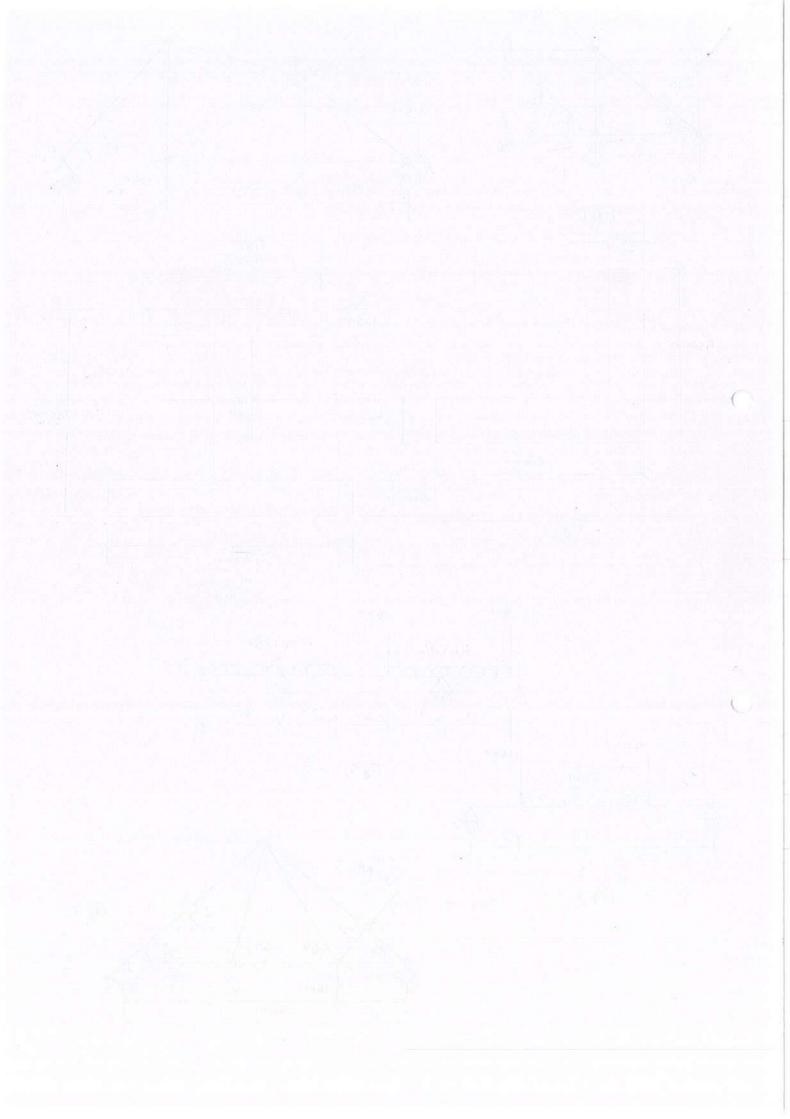
## TOTAL NO. OF QUESTIONS IN THIS PAPER: 6

Note: All questions are compulsory. Use internal choice wherever given. Assume suitable data if missing.

| Q.1 | (a)           | Answer any two questions                                                         | CO     | BL | PI    | Marks |
|-----|---------------|----------------------------------------------------------------------------------|--------|----|-------|-------|
|     | (i)           | Differentiate between concurrent and collinear forces.                           | COI    | 2  | 1.1.1 | 02    |
|     | (ii)          | State Varignon theorem and theorem of resolved parts                             | COI    | 2  | 1.1.1 | 02    |
|     | (iii)         | State Perpendicular and parallel axis theorem                                    | CO1    | 2  | 1.1.1 | 02    |
|     | (b)           | Answer any two questions                                                         | 004    |    |       | 0.0   |
|     | (i)           | Discuss Hypotenusal Allowance.                                                   | CO4    | 2  | 1.1.1 | 02    |
|     | (ii)<br>(iii) | Differentiate between Cumulative and Compensating Errors                         | CO4    | 2  | 1.1.1 | . 02  |
|     | (111)         | Discuss Reciprocal Ranging.                                                      | CO4    | 2  | 1.1.1 | 02    |
| Q.2 | (a)           | A man of mass 75 kg starts descending from the top of a spherical                | COI    | 4  | 1.2.1 | 04    |
|     |               | dome of 20 m diameter. If the coefficient of friction between the                |        |    |       |       |
|     |               | dome surface and the shoes of the man is 0.3, determine how far he               |        |    |       |       |
|     |               | can reach without slipping.                                                      |        |    |       |       |
|     |               | OR                                                                               |        |    |       |       |
|     |               | For the part of a truss obtained by passing a section is shown in Fig.1.         | 0.00   |    |       |       |
|     |               | Using the equation of moment alone determine the unknown forces $f_1$ ,          |        |    |       |       |
|     |               | f <sub>2</sub> and f <sub>3</sub> . Verify the results using remaining equations |        |    | W.    |       |
|     | (b)           | Analyze the truss shown in Fig. 2. Tabulate the results.                         | CO1    | 4  | 1.2.1 | 10    |
|     |               |                                                                                  |        |    |       |       |
| Q.3 | (a)           | Derive an expression for centre of gravity of right circular cone.               | CO2    | 3  | 1.2.1 | 04    |
|     | (b)           | For the plane lamina shown in Fig. 3 determine the product of inertia.           | CO2    | 3  | 1.2.1 | 06    |
|     |               | OR                                                                               |        |    |       |       |
|     |               | For the plane lamina shown in Fig. 4, determine the moment of inertia            |        |    |       |       |
|     |               | about the axes passing through the centroid.                                     | in all |    |       |       |
|     | (c)           | Derive an expression for moment of inertia for a triangle.                       | CO2    | 3  | 1.2.1 | 04    |
|     |               |                                                                                  | 002    |    | 1.2.1 |       |
| Q.4 | (a)           | For the beam shown in Fig. 5 determine the support reactions.                    | CO3    | 3  | 1.2.1 | 04    |
|     | (b)           | For the beam shown in Fig. 6, draw the SFD & BMD.                                | CO3    | 4  | 1.2.1 | 06    |
|     |               | OR                                                                               | COS    | 7. | 1.2.1 | 00    |
|     |               |                                                                                  |        |    |       | 12.04 |
|     | (c)           | Determine the support reactions for the truss shown in Fig. ?                    | 2      |    |       |       |
|     | (0)           | Prove that $T_1/T_2=e^{\mu\theta}$ with usual notations.                         | CO2    | 3  | 1.2.1 | 04    |
| Q.5 | (a)           | A 30 m chain was found to be 12 cm too long after chaining a                     | CO4    | 3  | 1.1.1 | 02    |
|     |               | distance of 2500 m. It was found to be 18 cm too long at the end of              | 004    | 3  | 1.1.1 | 02    |
|     |               | day's work after chaining a total distance of 6000 m. Find the true              |        |    | - 3   |       |
|     |               | distance if the chain was correct before the commencement of the                 |        |    | 30    |       |
|     |               | work                                                                             |        |    |       |       |
|     | (b)           | To find the width of a building lying on either side of a river, the             | CO4    | 3  | 1.2.1 | 04    |
| 2   | , ,           | bearings were taken at each corner (A&B) of building from a point P              | CU4    | 5  | 1.4.1 | 04    |
| 1.0 |               | the service (100) of building from a point I                                     |        | 12 |       |       |

lying on other side and were found to be 30 and 70. The bearing at another point Q lying on the same side as P was found to be 110. The bearings taken at each corners (A&B) from point Q were found to be 310 and 40. The bearing at P was observed to be 290. Determine the width of building if the horizontal distance between P & Q is 30m.


(c) The fore bearings of a quadrilateral ABCD are tabulated below. CO4 3 1.2.1 04 Determine the included angles.


| Lines | Fore Bearing |
|-------|--------------|
| AB    | 50°          |
| BC    | 120°         |
| CD    | . 230°       |
| DA    | 290"         |
|       | OR           |

A regular pentagon of 10m side has the fore bearing of a line AB as 105°15'. Determine the bearings of all other lines.

Q.6 (a) List various methods of leveling. Discuss barometric leveling in brief CO5 1 1.1.1 04
(b) The following staff readings were taken successively with a level of CO5 4 1.2.1 36
4.0 m on a continuously sloping ground at a common interval of 25 m. The RL of last point is 552.25. Enter the readings in a level book and determine the reduced level of all points. Use Rise & Fall method for computations.

0.605, 1.235, 1.86, 2.575, 0.240, 0.915, 1.935, 2.87, 0.565, 1.825, 2.725.





### JUNE - JULY 2022 EXAMINATION I B. TECH. (4YDC) EXAM CE-10003: FUNDAMENTALS OF CIVIL ENGINEERING & APPLIED MECHANICS

Time: 3 Hrs.]

Max. Marks

# TOTAL NO. OF QUESTIONS IN THIS PAPER: 6

Note: All questions are compulsory. Use internal choice wherever given. Assume suitable

| 1 (0.0. |                      | data if missing.                                                                                                                                                                                                                                                                                                                                                            |          |
|---------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Q.1     | (a)                  | Answer any three questions                                                                                                                                                                                                                                                                                                                                                  |          |
|         | (i)<br>(ii)          | Define force and list various force systems  Thus forces P & O are acting over a particle at an angle of 60°, the resultant of the                                                                                                                                                                                                                                          | 02<br>02 |
|         | (iii)<br>(iv)<br>(b) | forces is 25 kN making an angle of 45° with the horizontal. Determine forces P & Q. Draw neat diagrams of open & cross belt pulley system of power transmission. State perpendicular & parallel axis theorem.  Answer any two questions                                                                                                                                     | 02<br>02 |
|         | (i)                  | Differentiate between error and blunder.                                                                                                                                                                                                                                                                                                                                    | 02       |
|         | (ii)<br>(iii)        | List different types of chains Differentiate between prismatic and surveyor's compass (any two)                                                                                                                                                                                                                                                                             | 02<br>02 |
| 0.1     | 7-1                  | State and prove Lami's theorem.                                                                                                                                                                                                                                                                                                                                             | 04       |
| Q.2     | (a)<br>(b)           | Analyze the truss shown in Fig. 1 and tabulate the results.                                                                                                                                                                                                                                                                                                                 | 08       |
|         | (0)                  | OR                                                                                                                                                                                                                                                                                                                                                                          |          |
|         |                      | A ladder 5 m long is supported on wall and floor making an angle of 30° with the floor. The coefficient of friction between the ladder and wall is 0.30 while that between ladder and floor is 0.18. Evaluate how far a person of weight 60 kg can ascend without slippage. If he want to climb the top of ladder what horizontal push is required at the bottom of ladder? |          |
| Q.3     | (a)                  | A right circular cone of base width 80 cm and height 240 cm is resting over a hemisphere of 40 cm radius. The density of cone is 1.6 times the density of                                                                                                                                                                                                                   | 04       |
|         | (b)                  | hemisphere. Determine the centre of gravity.  For the plane lamina shown in Fig.2, determine the moment of inertia about the horizontal axis passing through centroid.                                                                                                                                                                                                      | 08       |
|         |                      | OR                                                                                                                                                                                                                                                                                                                                                                          |          |
|         | /                    | For the channel section shown in Fig. 3, determine the product of inertia about the axes passing through the centroid.                                                                                                                                                                                                                                                      |          |
| 0.4     | (a)                  | Determine the support reactions for the truss shown in Fig. 4. The centre to centre                                                                                                                                                                                                                                                                                         | 08       |

distance between the supports is 30 m.

Two parallel shafts 10 m apart are provided with 800 mm and 300 mm diameter 04 (b) pulleys and are connected by means of a cross belt. The direction of the rotation of the follower pulley is to be reversed by changing over to an open belt drive. How much length of the belt has to be reduced?

(b) The following bearings were observed with a compass in a closed traverse:

2. Determine the actual area of the unknown figure in hectares.

| Line | Fore Bearing | Back Bearing |
|------|--------------|--------------|
| AB   | 16°45'       | 198° 00'     |
| BC   | 224°30'      | 47° 30'      |
| CD   | 207° 15'     | 25° 30'      |
| DE   | 67° 45'      | 247° 15'     |
| EA   | 155° 15'     | 332° 45'     |

08

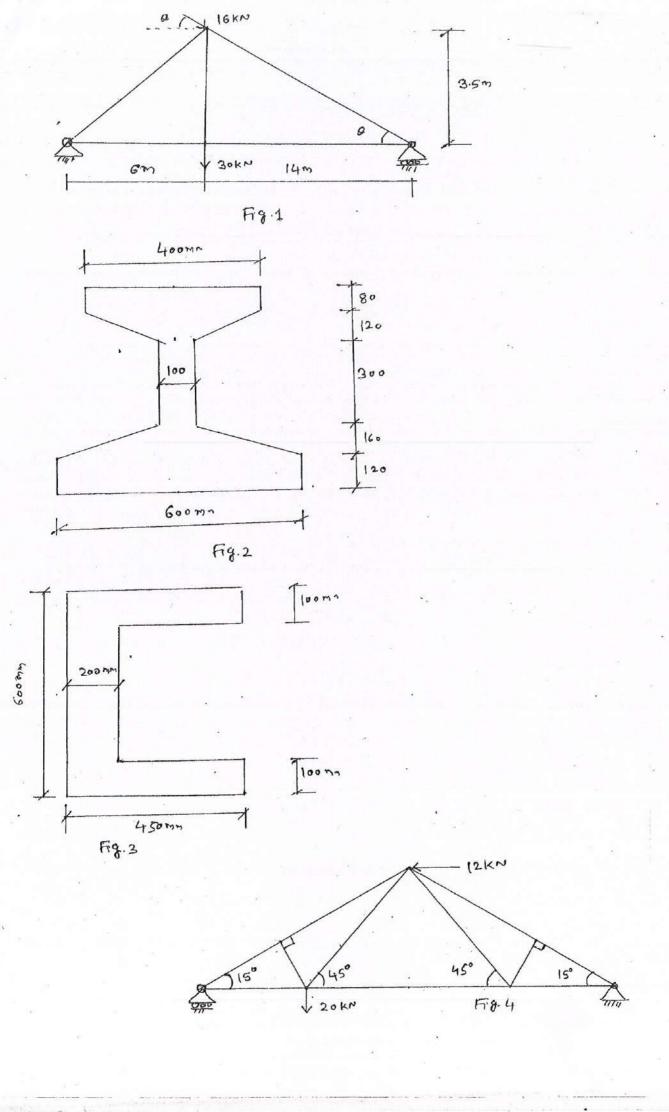
04

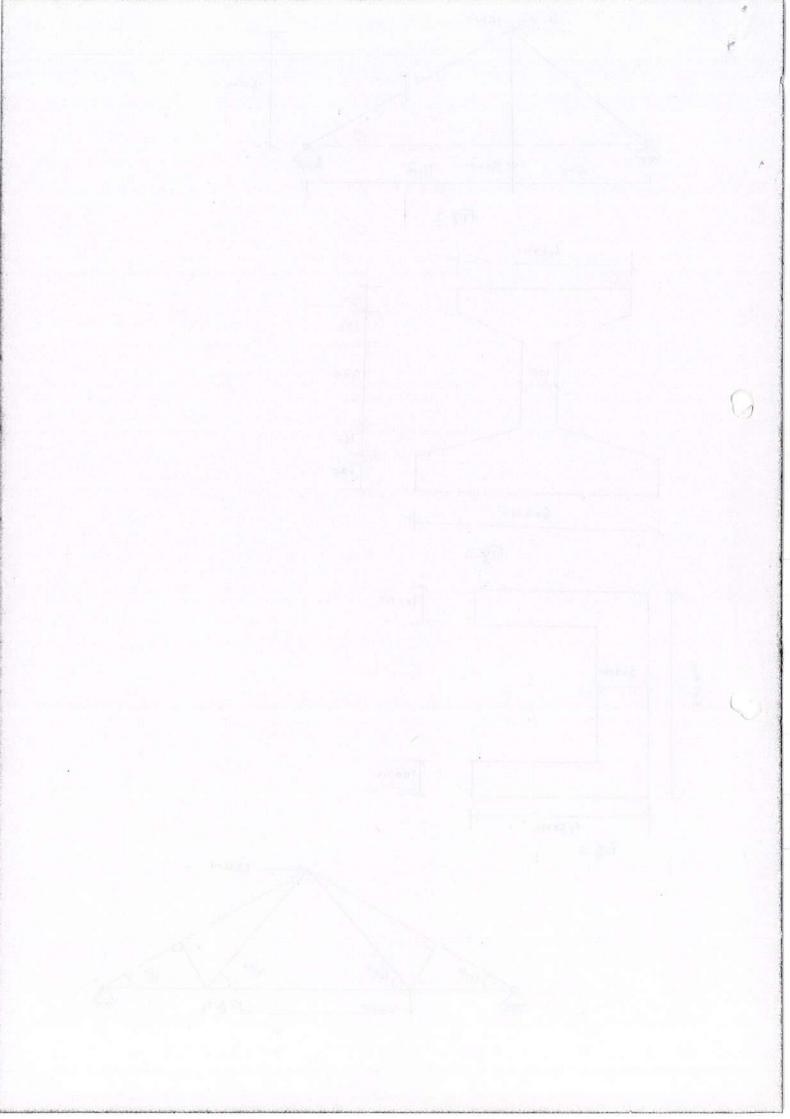
Determine (i) Included Angles and (ii) Adjust for local attraction

The included angles of pentagon ABCDE are tabulated below. Determine the bearings of all other lines if the bearing of line  $AB = 242^{\circ}30^{\circ}$ 

| Included Angle | Magnitude (°) |
|----------------|---------------|
| A              | 80            |
| В              | 70            |
| C              | 105           |
| D              | 125           |
| Е              | 160           |

Q.6 (a) Discuss profile leveling and cross sectioning.


(b) In order to determine the width of a building lying on the other side of a river, the bearings of the two extreme corners of the building taken from a point P on the side of river are 310°30' and 40°45' respectively. Another point Q is taken on the same side of the river and is 50 m away from P. The bearings of the two extreme corners of the building taken from Q are respectively 285°15' and 54°30'. Determine the width of building.


OR

The following readings were taken on a continuously sloping ground by a staff of 3.0 m length. Enter the readings in a page of survey field book. The first reading was taken on a bench mark of RL 300.515 m. Determine the RL of all points. Show all the necessary calculations

0.605, 1.235, 1.86, 2.125, 2.575. 0.235, 0.915, 1.540, 2.135, 2.905, 0.56, 1.525, 2.170 and 2.725.

-----XXXXX





### **FEBRUARY 2022 EXAMINATION**

#### I YEAR I SEM B.E/ B.TECH

# CE-10003: FUNDAMENTALS OF CIVIL ENGG.AND APPLIED MECHANICS PART B

Time: 90 Minutes]

[Max. Marks: 40

TOTAL NUMBER OF QUESTIONS IN THIS PAPER

05

NOTE: Answer all the five questions.

| S.No |     | Questions                                                                                                                                                                                                                                                                                                                                                | Marks | CO  | BL | PI    |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----|-------|
| Q.1  | (a) | What do you mean by system of force? Discuss coplanar concurrent and coplanar non-current system                                                                                                                                                                                                                                                         | (02)  | CO1 | L1 | 1.3.1 |
|      | (b) | Define the Polygon law of forces.                                                                                                                                                                                                                                                                                                                        | (02)  | CO1 | L2 | 1.3.1 |
|      | (c) | The cylinders are piled up in a rectangular channel as shown in fig. (a) Determine the reactions at point 6 between the cylinder A and the vertical wall of the channel.  Cylinder A: radius = 4m, weight = 150 N  Cylinder B: radius = 6m, weight = 400 N  Cylinder C: radius = 4m, weight = 200 N                                                      | (04)  | CO1 | L5 | 2.2.3 |
|      |     | 1 C 2 B 3                                                                                                                                                                                                                                                                                                                                                |       |     |    |       |
|      |     | Fig. 1                                                                                                                                                                                                                                                                                                                                                   |       |     |    |       |
|      |     | OR                                                                                                                                                                                                                                                                                                                                                       |       |     |    |       |
|      | (d) | Two blocks A and B are placed on inclined planes as shown in fig. The block A weight 500 N. Determine minimum weight of the block B for maintaining the equilibrium of the system. Assume that the blocks are connected by an pulley. Coefficient of friction $\mu_A = 0.25$ (between the block A and plane). Assume the same value for $\mu_B = 0.25$ . | (04)  | COI | L5 | 2.2.3 |
|      |     | A 300 6000                                                                                                                                                                                                                                                                                                                                               |       | 7   |    |       |
|      |     | Fig.2                                                                                                                                                                                                                                                                                                                                                    |       |     |    |       |

| Differentiates between centre of gravity and centroid.                                                                                                                                                  | (02)                                                                                                                                                                                                                                                                                                                                                           | CO2                                                                                                                                                                                                                                                                                                                                                             | Ll                                                                                                                                                                                                                                                                                                                                      | 2.2.4                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find centroid of L- Section as shown in fig.                                                                                                                                                            | (02)                                                                                                                                                                                                                                                                                                                                                           | CO2                                                                                                                                                                                                                                                                                                                                                             | L4                                                                                                                                                                                                                                                                                                                                      | 2.2.3                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                           |
| 40 mm                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 250 mm                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 200 mm X                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Fig.3                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              | (                                                                                                                                                                                                                                                                                                                                                                         |
| A rectangular hole is made in a triangular section as shown in figure. All dimensions are in mm. Determine the moment of inertia of the section about centroidal x-x axis passing through its centroid. | (04)                                                                                                                                                                                                                                                                                                                                                           | CO2                                                                                                                                                                                                                                                                                                                                                             | L4                                                                                                                                                                                                                                                                                                                                      | 2.2.3                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                           |
| 20 mm 30 mm 30 mm  x                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| 100 mm                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                | 1 4                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                         |
| Find the moment of inertia about x-axis.  Y  20 mm                                                                                                                                                      | (04)                                                                                                                                                                                                                                                                                                                                                           | CO2                                                                                                                                                                                                                                                                                                                                                             | L4                                                                                                                                                                                                                                                                                                                                      | 2.2.3                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                           |
| 20 mm 40 mm 60 mm                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| Fig.5                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                         | Find centroid of L- Section as shown in fig.  Y  40 mm  200 mm  Fig.3  A rectangular hole is made in a triangular section as shown in figure. All dimensions are in mm. Determine the moment of inertia of the section about centroidal x-x axis passing through its centroid.  A  30 mm  30 mm  27.7 mm  Fig. 4  OR  Find the moment of inertia about x-axis. | Find centroid of L- Section as shown in fig.  Y  40 mm  200 mm  X  Fig. 3  A rectangular hole is made in a triangular section as shown in figure. All dimensions are in mm. Determine the moment of inertia of the section about centroidal x-x axis passing through its centroid.  A  30 mm  20 mm  Fig. 4  OR  Find the moment of inertia about x-axis.  (04) | Find centroid of L- Section as shown in fig.  Y  40 mm  Fig.3  A rectangular hole is made in a triangular section as shown in figure. All dimensions are in mm. Determine the moment of inertia of the section about centroidal x-x axis passing through its centroid.  Fig. 4  OR  Find the moment of inertia about x-axis.  (04)  CO2 | Find centroid of L- Section as shown in fig.  Y  40 mm  Fig. 3  A rectangular hole is made in a triangular section as shown in figure. All dimensions are in mm. Determine the moment of inertia of the section about centroidal x-x axis passing through its centroid.  Fig. 4  OR  Fig. 4  OR  Find the moment of inertia about x-axis.  (04)  CO2  L4  CO2  L4  CO2  L4  CO2  L4  CO2  L4 | Find centroid of L- Section as shown in fig.  Y  40 mm  Fig. 3  A rectangular hole is made in a triangular section as shown in figure. All dimensions are in mm. Determine the moment of inertia of the section about centroidal x-x axis passing through its centroid.  Fig. 4  OR  Find the moment of inertia about x-axis.  (04)  CO2  L4  2.2.3  (04)  CO2  L4  2.2.3 |

| Q.3 (a) | Find the forces in the member AB, DB, DE of the truss as shown in fig.by method of section.                      | (03) | CO3     | L5   | 2.4.1 |
|---------|------------------------------------------------------------------------------------------------------------------|------|---------|------|-------|
|         | 7 KN 24 KN 7 KN  B  C                                                                                            |      |         |      |       |
|         | 0.8 m  D  1.5 m  E  1.5 m  F                                                                                     |      |         |      |       |
|         | <b>♥</b><br>8 KN                                                                                                 |      | Mer     |      |       |
|         | Fig.6                                                                                                            |      |         |      |       |
|         | OR                                                                                                               |      |         |      |       |
| (b)     |                                                                                                                  | (03) | CO3     | L4   | 2.4.1 |
| (c)     | Determine the support reactions and nature magnitude of forces in members of truss shown in figure.              | (05) | CO3     | L5   | 2.4.1 |
|         | 2 m 200 KN C A 2 m D 4 m B 4 m                                                                                   |      | E WA    |      |       |
| = = 1   | Fig.7                                                                                                            |      | Thank   | hour |       |
| H-WEST  | OR                                                                                                               |      |         |      |       |
| (d)     | Determine the reaction and draw shear force and bending moment for simple supported beam loaded as shown in fig. | (05) | CO3     | L5   | 2.4.1 |
|         | 10 KN/m 10 KN 20 KN 10 KN  A 5 m 0 4 2.5 m 1 m 1.5 m                                                             |      |         |      |       |
| 10      | Fig.8                                                                                                            |      | J. T. F | i G  |       |
| Q.4 (a) | Explain different types of chain in survey.                                                                      | (02) | CO4     | LI   | 1.3.1 |
| (b)     |                                                                                                                  | (02) | CO4     | L2   | 2.2.4 |
| (c)     | A Nominal distance of 3 Metres was set out with a 30 m                                                           | (04) | CO4     | L5   | 2.2.3 |

-0

|     |     | on the pull of Top of The top level. Comarks of the tap catenar Kg.  Take range Density Section Coeffice | pe from a mark top of another. 10 Kg and at one peg was 0.0 of the higher Calculate the exon the two peg e was standard y, Under a pull adius of earth = 7 of Tape = 7.80 of Tape = 0.08 dient of expansity is Modulus = 2 | the tape being a mean temporal a mean temporal 25 metre below peg was 460 meant and reduced at a temporal at a tem | ng in catenary<br>perature of 70<br>bw the top of the<br>metres above in<br>I distance between to mean sea<br>interperature of<br>(b) 12 Kg and<br>per 1° F | under a  F. The he other. mean sea ween the level, if 60° F in |      |       |    |       |
|-----|-----|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------|-------|----|-------|
|     |     |                                                                                                          |                                                                                                                                                                                                                            | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                |      |       |    |       |
|     | (d) |                                                                                                          | llowing bearing compass:                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erved while tr                                                                                                                                              | aversing                                                       | (04) | CO4   | L5 | 2.2.3 |
|     |     |                                                                                                          | Line -                                                                                                                                                                                                                     | F.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B.B                                                                                                                                                         | 1                                                              |      |       |    |       |
|     |     |                                                                                                          | AB                                                                                                                                                                                                                         | 45° 45'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 226º 10'                                                                                                                                                    | 37177                                                          |      |       |    |       |
|     |     |                                                                                                          | BC                                                                                                                                                                                                                         | 96 <sup>0</sup> 55'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2770 5'                                                                                                                                                     |                                                                |      |       |    |       |
|     |     |                                                                                                          | CD                                                                                                                                                                                                                         | 29° 45'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 209° 10'                                                                                                                                                    |                                                                |      |       |    |       |
|     |     |                                                                                                          | DE                                                                                                                                                                                                                         | 324° 48'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1440 48'                                                                                                                                                    |                                                                |      |       |    |       |
|     |     |                                                                                                          | n which station                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             | ttraction                                                      |      |       |    |       |
| Q.5 | (a) | What i mark.                                                                                             | s Levelling?                                                                                                                                                                                                               | Define Redu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ced level and                                                                                                                                               | d Bench                                                        | (02) | CO5   | LI | 1.3.1 |
|     | (b) |                                                                                                          | e various meth                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (02)                                                                                                                                                        | CO5                                                            | L1   | 1.3.1 |    |       |
|     | (c) | The foll with a third, si 2.228; 1.982; Enter the calculate with a si                                    | (04)                                                                                                                                                                                                                       | CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L5                                                                                                                                                          | 2.1.2                                                          |      |       |    |       |
|     | (d) | A was                                                                                                    | a construction<br>taken as a teng notes were r                                                                                                                                                                             | emporary B.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |                                                                | (04) | CO5   | L5 | 2.1.2 |
|     |     | D 1'                                                                                                     | g on inverted st                                                                                                                                                                                                           | off on D.M. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I- 4 2                                                                                                                                                      | 232                                                            |      |       |    |       |

| 0.00 | Reading on peg P on ground change of                       | finstrument          |  |
|------|------------------------------------------------------------|----------------------|--|
|      |                                                            | : 1.034              |  |
|      | Reading on peg P on ground                                 | : 1.328              |  |
|      | Reading on inverted staff on bottom of                     | f cornice B: 4.124   |  |
|      | Enter the readings in a level book page R.L, of Cornice B. | ge and calculate the |  |

