FEB. 2023 EXAMINATION I B.E./B.TECH. (4YDC) EXAM MA 10501: MATHEMATICS - II

Time: 3 Hrs.]

[Max. Marks : 70

TOTAL NO. OF QUESTIONS IN THIS PAPER: 5

Note: Each question carry five subparts a, b, c, d and e. Attempt subparts a, b, c and any one from d or e in each question. All questions carry equal marks.

			MARKS	CO	BL	PI
Q.1	(a)	If A and B are two unitary matrices, show that AB is a unitary matrix.	02	CO1	BL-1	1.1.1
	(b)	Express the matrix	02	CO1	BL-2	1.1.1
		$\begin{bmatrix} 1+i & 2 & 5-5i \end{bmatrix}$				
		$A = \begin{bmatrix} 1+i & 2 & 5-5i \\ 2i & 2+i & 4+2i \\ -1+i & -4 & 7 \end{bmatrix}$ as the sum of Hermitian matrix				
		$\begin{bmatrix} -1+i & -4 & 7 \end{bmatrix}$		041		
		and skew- Hermitian matrix.			CONTRACT NOR	w 200 S
	(c)	Examine the following vectors for linear dependence	03	CO1	BL-2	1.1.1
		$X_1 = (1, 2, 4), X_2 = (2, -1, 3), X_3 = (0, 1, 2), X_4 = (-3, 7, 2)$				
	(d)	Discuss the consistency of the following system of equations	07	CO1	BL-3	1.1.1
		and if consistent solve the equations: 2x-3y+7z=5, $3x+y-3z=13$, $2x+19y-47z=32$				
		2x - 3y + 72 - 3, 3x + y - 32 - 13, 2x + 19y - 472 = 32 OR				
	(e)	Verify Cayley-Hamilton theorem for the matrix	07	CO1	BL-3	1.1.1
		$A = \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}$ and hence find A^{-1} .				
		$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A^{-1} .				
Q.2	(a)	Find differential equation of which $y = e^x(A\cos x + B\sin x)$	02	CO2	BL-1	1.1.1
		is a solution.				
	(b)	Define exact differential equation with example.	02	CO2	BL-2	1.1.1
	\-/			302	- L- L	
	(c)	Solve $(1 + y^2)dx = (tan^{-1}y - x)dy$	03	CO2	BL-2	1.1.1
	(d)	Solve $(2x \log x - xy)dy + 2ydx = 0$	07	CO2	BL-2	1.1.1
		OR				
	(e)	Solve	07	CO2	BL-2	1.1.1
		$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = x\cos 2x.$				
Q.3	(a)	dx² dx Solve	00	000	DI 4	
Q.J	(a)		02	CO3	BL-1	1.1.1
		$4x^2 \frac{d^2 y}{dx^2} + 16x \frac{dy}{dx} + 9y = 0$				
	(b)	Write the step of method of variation of parameters.	02	СОЗ	BL-2	1.1.1
			3.5 0	-00		
	(c)	Find the particular integral of differential equation	03	CO3	BL-2	1.1.1
		$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$				
		dx^2 dx				

	(d)	Solve the following simultaneous differential equation	07	CO3	BL-2	2.4.1
		$\frac{dx}{dt} + 4x + 3y = t, \frac{dy}{dt} + 2x + 5y = e^t$				
		OR				
	(e) .		07	CO3	BL-3	2.4.1
		containing a constant resistance R ohms in series and a				
		constant inductance L henries. If the initial current is zero,				
	***	show that the current builds upto half its theoretical maximum in (L log2) / R seconds.				
Q.4	(a)	Define Normal distribution and its properties.	02	CO4	BL-1	1.1.1
	(b)	Prove that the Poisson distribution is limiting case of	02	CO4	BL-1	1.1.1
Q.4 Q.5	(~)	Binomial distribution.	02	CO4	DL-1	1.1.1
	(c)	By the method of least squares, find the straight line that best	03	CO4	BL-2	1.1.1
		fits the following data:	Navasi II.			
		x: 1 2 3 4 5				
		y: 14 27 40 55 68				
	(d)	Derive the mean and variance of Binomial Distribution.	07	CO4	BL-2	1.1.1
		OR				
	(e)	If the probability that an individual suffers a bad reaction from	07	CO4	BL-2	1
		a certain injection is 0.001, determine the probability that out				
		of 2000 individuals				
		(i) Exactly 3 (ii) more than 2 individuals (iii) None (iv) more				
0.5	(-)	than 1 individuals will suffer a bad reaction.	or hall			
Q.5	(a)	State Demoivre's theorem and write its applications.	02	CO5	BL1	1.1.1
3	(b)	Find the general value of $\log(-3)$.	02	CO5	BL-1	1.1.1
	(c)	Prove that $\tanh Z$ and $\sinh Z$ are periodic function and find	03	CO5	BL-2	1.1.1
		their periods.				
	(d)	(π, θ)	07	CO5	BL-2	1.1.1
		If $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$, then prove that				
		(/				
		(i) $\tanh \frac{u}{2} = \tan \frac{\theta}{2}$ and (ii) $\cosh u = \sec \theta$.				
		OR		*		
	(e)	Sum the series	07	CO5	BL-3	1.1.1
		$\sin \alpha \cos \beta - \frac{1}{2} \sin^2 \alpha \cos 2\beta + \frac{1}{3} \sin^3 \alpha \cos 3\beta - \dots \infty$				
		$2^{\sin \alpha \cos p} - \frac{1}{3}^{\sin \alpha \cos p} - \frac{1}{3}^{\sin$				

Code: 937

JUNE-JULY 2022 EXAMINATION I B.E/B. TECH EXAM

MA 10501:-MATHEMATICS-II

Time: 3 Hrs.]

[Max. Marks: 70

TOTAL NO. OF QUESTIONS IN THIS PAPER:5

Note: Attempt all questions. All questions carry equal marks. Each question carries five subparts a, b, c, d and e. Parts a, b and c are compulsory and attempt any one from d and e.

S. No.		Questions	Marks	CO	BL	PI
Q.1	(a)	Show that $A = \begin{bmatrix} -i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & -2i \end{bmatrix}$ is skew Hermitian matrix.	(02)	CO1	1	1.1.1
1	(b)	Find the characteristic roots of the matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$	(02)	CO1	1,2	1.1.1
	(c)	State and prove Cayley Hamilton theorem.	(03)	CO1	1,2	1.1.1
	(d)	Determine the values of λ and μ such that the system $2x - 5y + 2z = 8,2x + 4y + 6z = 5, x + 2y + \lambda z = \mu \text{ Have (i) No solution (ii) A Unique Solution (iii) Infinite number of solution.}$	(07)	CO1	3	1.1.1
		OR				
	(e)	Reduce the following matrix to normal form and find its rank $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$	(07)	CO1	4	1.1.1
Q.2	(a)	Form the differential equation by eliminating the arbitrary constant $y^2 = m(a^2 - x^2)$	(02)	CO2	1	1.1.1
	(b)	Solve $\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$	(02)	CO2	1,2	1.1.1
	(c)	Solve $\left[1 + \log(xy)\right]dx + \left[1 + \frac{x}{y}\right]dy = 0$	(03)	CO2	2	1.1.1
	(d) '	Solve $x \frac{dy}{dx} + y = y^2 log x$	(07)	CO2	1,3	1.1.1
		OR AQ	54			
TE	(e)	Solve $\frac{d^2y}{dx^2} + y = e^{-x} + \cos x + x^3 + e^x \sin x$	(07)	CO2	1,3	1.1.1

Q.3	(a)	Find the Complimentary function of the differential equation	(02)	CO3	. 1	1.1.1
		$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = 0$				
,	(b)	Write down the basic steps for solving the method of variation of parameter.	(02)	CO3	2	1.1.1
	(c)	Find the Particular integral of $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = Sin[2\{\log(1+x)\}]$	(03)	CO3	1,2	1.1.1
	(d)	Solve $\frac{dx}{dt} + 5x + y = e^t$, $\frac{dy}{dt} - x + 3y = e^{2t}$	(07)	CO3	3	1.1.1
1		OR .		Mer I		100
	(e)	A coil having a resistance of 15 ohms. And an inductance of 10 henries is connected to a 90 volts supply. Determine the value of the current after 2 seconds. $(e^{-3} = 0.05)$	(07)	CO3	1,2	1.1.1
Q.4	(a)	The mean and variance of a binomial distribution $P(X, n, p)$ are 4 and $\frac{4}{3}$ respectively. Find $P(X = 2)$.	(02)	CO4	1	1.1.1
	(b)	Derive the recurrence formula for Poisson distribution	(02)	CO4	1	1.1.1
	(c)	The life of army shoes is normally distributed with mean 8 months and standard deviation 2 months. If 5000 pairs are insured, how many pairs would be expected to need replacement after 12 months? (Given that $P(Z \ge 2) = 0.0228$ and $Z = \frac{X - \mu}{\sigma}$)	(03)	CO4	2	1.1.1
1	(d)	Derive the formula of mean and variance for binomial distribution.	(07)	CO4	3	1.1.1
		OR	RIGHT 25-E			
	(e)	Fit a second degree parabola to the following data taking y as dependent variable x 1 2 3 4 5 6 7 8 9	(07)	CO4	. 3	1.1.1
Q.5	(a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(02)	CO5	2	1.1.1
	(b)	Express $\frac{(6+i)(2-i)}{(4+3i)(1-2i)}$ in the form of $a+ib$.	(02)	CO5	2	1.1.1
			(03)	CO5	3	1.1.1
	(c)	Prove that $sech^{-1}x = log \frac{1+\sqrt{1-x^2}}{x}$	(00)	1] 60	08	1
	(c)_	Prove that $sech^{-1}x = log \frac{1+\sqrt{1-x^2}}{x}$ If $\alpha, \alpha^2, \alpha^3, \alpha^4$ are the roots of $x^5-1=0$ find them and show that $(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)=5$.	(07)	CO5	3	1.1.1
		If $\alpha, \alpha^2, \alpha^3, \alpha^4$ are the roots of $x^5 - 1 = 0$ find them and show that	sex)goi	CO5	3	1.1.1

ONLINE FEB. 2022 EXAMINATION

B.E. /B.TECH EXAM

MA 10501:- MATHEMATICS-II

Time:90 Minutes]

[Max. Marks: 40

PART B: Descriptive Questions

TOTAL NO. OF QUESTIONS IN THIS PAPER: 5

Note: Each question carry three subparts a, b and c. Attempt any two from a, b and c. All questions carry equal marks.

S. No.		Questions	Marks	С0	BL	PI	
Q.1	(a)	Reduce the matrix A into its normal form where $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5 \end{bmatrix}$ and hence obtain its rank.	(04)	CO1	2	1,1,1	
	(b)	Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$	(04)	CO1	2,3	1.1.1	
	(c)	Investigate the values of λ and μ so that the equations $2x+3y+5z=9, \ 7x+3y-2z=8, \ 2x+3y+\lambda z=\mu \text{ have}$ (i)no solution (ii)a unique solution (iii)an infinite number of solutions.	(04)	CO1	2	1.1.1	
Q.2	(a)	Solve $\frac{dy}{dx} = \frac{y - x + 1}{y + x + 5}$	(04)	CO2	2	1.1.1	
	(b)	Solve $(x^2 + y^2)dx - 2xydy = 0$	(04)	CO2	2	1.1.1	
	(c)	Solve $(D^2 + 2D + 4)y = e^x \sin 2x$	(04)	CO2	2	1.1.1	

Q.3	(a)	Solve x^2	$\frac{d^2y}{dx^2}$	$-2x\frac{dy}{dx}$		(04)	CO3	2	1.1.1					
	(b)	Solve x^2		$+x\frac{dy}{dx}$	(04)	CO3	3	1.1.1						
	(c)	The equa an electricapacity any time	ical c C, in	ircuit h series	aving is $E =$	resistar $Ri + \int_{0}^{\infty} dt$	ice R ai	nd a co	ndensei	of	(04)	CO3	3	1.1.1
Q.4	(a)	Fit an ex		ntial cu	3 1.8	$= ab^{x} t$ $\begin{vmatrix} 4 \\ 2.5 \end{vmatrix}$	5 3.6	6 4.7	7 6.6	8 9.1	(04)	CO4	3	<u> </u>
	(b)	In 800 families with 4 children each, how many families would be expected to have (i)2 boys and 2 girls (ii) at least 1 boy (iii)no girl. Assuming equal probabilities for girls and boys.										CO4	2	1.1.1
	(c)	If 2% of least one P(1 <x<8< td=""><td>is de</td><td>fective</td><td>and (i</td><td>i)exactl</td><td>find the y 7 are</td><td>probal defecti</td><td>oility th</td><td>at (i) at so find</td><td>(04)</td><td>CO4</td><td>2</td><td>1.1.1</td></x<8<>	is de	fective	and (i	i)exactl	find the y 7 are	probal defecti	oility th	at (i) at so find	(04)	CO4	2	1.1.1
Q.5	(a)	Express $Log(Logi)$ in the form $A + iB$.										CO5	2	1.1.1
	(b)	Sum the s $1 + \frac{\cos \alpha}{\cos \alpha}$				(04)	CO5	2	1.1.1					
	(c)	If $u = \log_e \left[\tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right]$ prove that $\tan h \frac{u}{2} = \tan \frac{\theta}{2}$								(04)	CO5	2	1.1.1	
