8086 MICROPROCESSOR

UNIT -IV

Topics to be covered:

- Architecture of 8086
- Register Organization
- pin description
- Memory Segmentation
- Physical Memory Organization
- Signal descriptions of 8086- Common Function Signals
- Minimum& Maximum mode signals
- Pipelining in 8086 microprocessor.

8086 Microprocessor -Features

- ▶ 16 bit
- ▶ 40-pin, Dual Inline Packaged IC.
- supports a wide range of instructions-CISC Based
- ▶ 20-bit address bus, which can address up to 1 MB of memory
- ▶ 16-bit data bus- transfer data between the microprocessor and memory or I/O devices.
- > segmented memory architecture- addressed using both a segment register and an offset
- ▶ 14 internal registers, each of 16 bits or 2 bytes wide.
- **▶** Main advantage- it supports Pipelining.

Register Organization

Registers

General Purpose registers

- Holding data
- Variables
- Intermediate results
- Counters
- Offset

Special purpose registers

- address memory segments
- include the flags register
- instruction pointer (IP)

General Purpose Registers

- AX: 16 bit Accumalator
- BX: Used for offset storage for calculating physical address
- CX: Default Counter
- DX: Implicit data or act as destination for certain instructions

Special Purpose Registers

- Segment registers holds the address of a particular memory segment.
- Flags holds information about the state of the processor after executing an instruction.
- Pointer and Index Registers usually contains offset address

Flag

registers

Block Diagram

Block Diagram of 8086 Microprocessor

Memory Segmentation

One way of positioning four 64k byte segments within the 1M byte memory space of an 8086

Advantages of segmented memory

Address handling capacity is 16 bit but can address 1MB memory

Code, Data and Stack are on different location to avoid overwrite (Data protection)

Permits program/ its data to be put into different areas of memory

Generating Physical address of Memory

- The 8086 microprocessor can address up to 1 megabyte (MB) of physical memory.
- ▶ 1 MB memory is divided into 16 segments, each with a size of 64 KB
- ➤ 20-bit physical address by combining the contents of the segment register and the offset register

 Physical address = segment address × 10H + offset address
- The offset address values are from 0000H and FFFFH
- The physical addresses range from 00000H to FFFFFH.

Calculating Physical address

For example, consider the segment address is 2010*H* and the offset address is 3535*H*.

The physical address is calculated as:							
Segment Address	2010 <i>H</i>			$0\ 0\ 1\ 0$	$0\ 0\ 0\ 0$	$0\ 0\ 0\ 1$	$0\ 0\ 0\ 0$
Shifted left by							
4 bit positions			$0\ 0\ 1\ 0$	$0\ 0\ 0\ 0$	$0\ 0\ 0\ 1$	$0\ 0\ 0\ 0$	$0\ 0\ 0\ 0$
		+					
offset address				0011	0101	0011	0101
physical address			$0\ 0\ 1\ 0$	0011	0110	0 0 1 1	0101
			2	3	6	3	5

Pin Description

Queue Operation

Latching 20 bit address lines

Buffering Data Bus of 8086

8086 in Minimum Mode

Read cycle in Minimum mode

Write cycle in Minimum Mode

Maximum Mode

Read cycle in Maximum Mode

Write cycle in Maximum modes

