Department of Civil Engineering and Applied Mechanics Lesson Plan B. Tech II Year CE21015 Engineering Material Semester: III

G 3.7	Schester. III	Session 2024-25				
S.No.	Topic covered (Theory)	LECTURE NO				
	Unit-1 (Lime & Clay Products)					
	Lime: Introduction, general terminology,					
1	Classification of lime , properties, BIS 712-	Lecture No 01				
	1984(Classification of lime)					
2	Comparison of fat and hydraulic lime,	Lecture No 02				
2	Manufacture (calcination of lime stone & Slaking).	Lecture No 02				
3	Slaking of lime, Properties of Lime & Uses of	Lastrina No. 02				
3	lime, I.S. specification & tests.	Lecture No 03				
4	Clay Products: Introduction of bricks,	V 04				
4	composition, Classification, tests for bricks	Lecture No 04				
5	,qualities of good brick. Manufacturing of bricks.	Lecture No 05				
	Tiles, Different kinds of tiles, manufacture of					
6	tiles, Terra-cotta, Porcelain	Lecture No 06				
7	Earthenware and Stoneware, Refractory	Lecture No 07				
	materials, classification, and properties.					
	Unit-2 (Glass, Timber &	& plastics)				
8	Glass: Introduction, function of glass in buildings, constituents and classification of glass,	Lecture No 08				
0	Manufacturing process of glass, treatments,	Lasteria Na 00				
9	different types of glasses and their applications (Uses).	Lecture No 09				
10	Timber: Introduction, classification and parts of	Y N. 10				
10	tree, Structure of exogenous tree.	Lecture No 10				
11	Physical and Mechanical properties of timber.	Lecture No 11				
12	Conversion of timber.					
	Defects and Decay in timber. Seasoning of timber (methods), Preservation,	Lecture No 12				
13	timber products, quality of good timber and uses.	Lecture No 13				
	Plastics: Introduction, polymerization,					
14	Classification of plastics , Characteristics of	Lecture No 14				
	plastics					
15	Properties, moulding and fabrication of plastic products and its uses.	Lecture No 15				
	Unit-3 (Rubber, organic coating & La	Laminates and Adhesives)				
	Rubber: Introduction, Classification of rubber,	A A A A A A A A A A A A A A A A A A A				
16	vulcanization, compounding of rubber, reclaimed	Lecture No 16				
	rubber.					
17	Organic Coating: Ingredients, Types, Luminescent Coating, Fire Retarding Coating.	Lecture No 17				
18	Laminates: Definitions, Types, Laminated Wood, Compressed Laminated,	Lecture No 18				
10	Adhesives: Definitions, Classification of	Lecture No 19				
19	adhesives ,Plastic, Avtex.					
	Unit-4 (Concrete)					
20	Concrete: Introduction of concrete Materials:	Lecture No 20				

	Comment Assessed		
	Cement, Aggregate.		
	Components of cement, Manufacturing of		
	cements, compounds.		
21	Hydration of cement, heat of hydration, Classification of cement.	Lecture No 21	
22	Aggregate: source, classification, water to	Lecture No 22	
22	cement ratio.	Lanton Na 22	
23	Admixtures: Classification and properties. Lecture No 23		
2.4	Properties of fresh concrete: Workability, factors	Lecture No 24	
24	affecting workability, Measurement of		
	workability, segregation, and Bleeding.		
25	Tensile and Compressive Strength, Modulus of	Lecture No 25	
_	Elasticity, Effect of Shrinkage and Creep.		
26	Mixing, Transporting, Placing, Compaction,	Lecture No 26	
	Finishing, Curing, Quality Control.	Lecture 1 to 20	
27	Design of Concrete Mixes. Introduction, Basic	Lecture No 27	
2,	Considerations, Factors	Lecture 1 to 27	
28	Methods of proportioning DOE, ACI, Guidelines	Lecture No 28	
20	of BSI Methods	Lecture No 20	
29	ACI Method of concrete of mix design	Lecture No 29	
30	IS Method of concrete of mix design	Lecture No 30	
31	DOE Method of concrete of mix design	Lecture No 31	
32	Mix design problem.	Lecture No 32	
	Unit -5(Heat Insulating and	Acoustic Materials)	
33	Heat Insulating: Classification, Composition,	Lastrona No. 22	
33	Tests,	Lecture No 33	
2.4	Acoustic Materials: Classification, Composition,	I 4 N 24	
34	Tests, reverberation.	Lecture No 34	
25	Sound Absorption, types of Acoustical Materials,	Lecture No 35	
35	Acoustical Treatment,		
36	Noise and its affects, Noise Reduction	Lecture No 36	
	Material Science: Inter atomic bonds, bonding		
37	force, bond energy, intermolecular bonds,	Lecture No 37	
	thermal energy		
38	Classification of solids, imperfections solids.	Lecture No 38	
	Behaviour of materials under compression,		
39	tension, bending, fatigue, creep, hardness,	Lecture No 39	
	Behaviour of common materials under different		
40	loadings: Concrete, Steel, Timber, Plastics,	Lecture No 40	
	Glass.		
L	1		

Prof. & Head CE-AMD

Department of Civil Engineering and Applied Mechanics Lesson Plan B. Tech II Year CE 21003 STRENGTH OF MATERIAL

Semester: III

Session No	Unit #	Topic
1/2		Introduction, Stress and Strain, Normal and Shear Stresses and Strains Hooke's Law and Poisson's Ratio, Complementary Shear.
3/5	1	Relations between the Elastic Constants. Mechanical Properties of Materials: Strength, Stiffness, Elasticity, Plasticity, Toughness, Hardness, Ductility etc. Ultimate Strength, Working stress and Factor of safety
6/8		Stresses on Oblique Planes. Principal planes and Principal stress and strains. Mohr's stress circle.
9/10	2	Introduction to Bending Moment and Shear Force. Bending Moment and Shear Forces at a Section of a cantilever Beams subject to Vertical Loads, Inclined Loads and Couples
11/13		Bending Moment and Shear Forces at a Section of a simply supported, overhang Beam subject to Vertical Loads, Inclined Loads and Couples. Condition of maximum bending moment to be as minimum as possible.
14/15		Relation between B.M., S.F. and Loads. Graphical Methods for drawing B.M. diagram and S.F. diagram.
16/17		Introduction of Stresses due to Bending. Assumptions and derivation of principal equation of Bending.
18/19	3	Modulus of Section and Modulus of Rupture. Types of problems in bending.
19/20		Beams of uniform strength and flitched beams
21		Introduction to Deflection of Beams. Uniform Curvature. Relation between the Deflection, Curvature and Bending Moment.
22/24	4	Slopes and Deflection of Beams. Macaulay's method.
25/26		Moment area method.
27/28		Conjugate beam method.
29/30		Introduction to shear stresses in beams. Derivation of principal equation of shear stress. Shear stress distribution in different shapes of beams viz. rectangular, circular and flanged sections.
31/32	5	Torsion of Shafts. Pure Torsion. Twisting of Solid and Hollow Circular Cross Sections. Derivation of principal equation of torsion.
33/34		Transmission of Power by Circular Shafts. Design of Shafts. Combined Bending and Twisting.

Department of Civil Engineering and Applied Mechanics Lesson Plan B. Tech IIyear CE:21007 BUILDING PLANNING & ARCHITECTURE

Semester: III

S.No.	Tonio covered (Theory)	Session 2024-25	
	Topic covered (Theory)	LECTURE NO	
1	Introduction of building elements	Lecture No 01	
2	Substructure definition and functions	Lecture No 02	
3	Superstructure definition and their functions	Lecture No 03	
4	Regulation and bye laws	Lecture No 04	
5	Setback and open spaces	Lecture No 05	
6	Ground coverage and FAR	Lecture No 06	
7	Site planning and infrastructure provision	Lecture No 07	
8	Orientation and climate considerations	Lecture No 08	
9	Design for solar radiation	Lecture No 09	
10	Ventilation and lighting, noise reduction	Lecture No 10	
11	Space standards for various functions	Lecture No 11	
12	Optimization of space Lecture No 12		
13	Services: artificial lighting & ventilation	Lecture No 13	
14	Sanitation	Lecture No 14	
15	Design principles of staircase	Lecture No 15	
16	Meaning and role of architecture in planning Lecture No 16		
17	Introduction to roman and Greek architecture	Lecture No 17	
18	Introduction to Buddhist architecture	Lecture No 18	
19	Introduction to Islamic & Hindu architecture	Lecture No 19	
20	Architectural composition: elements of composition	Lecture No 20	
21	Unity, symmetry and balance, proportion and scale	Lecture No 21	
22	System characteristics: texture, pattern and color	Lecture No 22	
23	Expression working drawings: Plan elevation and section	Lecture No 23	
24	Site plan and detailing	Lecture No 24	
25	Elements of perspective view	Lecture No 25	
26	Parallel and oblique perspective	Lecture No 26	

PROF. & HEAD **CE-AMD, SGSITS INDORE**