DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS : M. TECH (MANUFACTURING ENGINEERING) SEMESTER A

IP82011: METAL CUTTING AND MACHINE TOOLS

ERIO				TTING AND MACHINE TOOLS MAXIMUM MARKS									
L	Р	Tu	T	P	Tu	THEC	DRY	PRAG	CTICAL	TOTAL MARKS			
03	00	00	03	-	-	CW 30	END SEM 70	SW -	END SEM	100			
ote: Ea	ach lectu	re is of o	ne hour	durat	ion.								
COU OBJE	RSE ECTIVE	2	meta	To Revise Manufacturing Process I fundamentals, educating students or metal cutting processes and emphasizing machine-related theories. Provide insight into super finishing operations like lapping and honing.									
COU OUT	RSE COMES	On s	succes	sful co	mpletic	on of the course	e, the s	tudent should l	be able-				
CO 1	To le Proce		election	of req	uired p	processe	es and working	princi	ples of differen	nt Machining			
CO 2	To ar	nalyze an	yze and evaluate the performance of Machining Processes for different Materials										
CO 3	To ide	entify Ma	chining	Proce	esses fo	or creati	ng desired feat	tures fo	or different Ma	terials.			
CO 4		lustrate tess perfor		hinin	g perfo	ormance	e characteristic	cs and	analysis for	optimization			
CO 5	To ela	aborate p	rinciple	and aj	pplicati	on of c	onventional &	Abrasi	ive micromach	ining.			
Cou	rse Outo	comes		PO1			PO2		P	03			
	CO1			2			2			2			
	CO2		3 2				2		2				
	CO3					2			2				
	CO4			3			2		2				
	CO5			2									
		-					ed as followin	g:					
Theory	y paper		emester						. 15 36 1				
				ous assessment: 30 Marks (Two mid-term tests:15 Marks, Assignment:5 Quiz: 5 Marks, and Regularity: 5 Marks)									
COU	RSE CO	NTENT					• ,						
UNIT	1	Mac	a. M Cu ca ing b. M Cu Ve c. M	achin utting l bore g Mac achin utting ertical achin	e Tools, Tools, r), Hor hine (S e Tools, -Millin	ls Using Lathe M izontal- Shaper), Is Usin Drillir Ig Mach Is Usin	g Single-Point Machines, Ver Boring Machi Planning Mac g Multi-Poin ng Machining, ine, Broaching g Abrasive W	t Cutti tical-B ining (I chine (I t Cutt t Cutt g Mach Theels:	ing Tools: M contal-Milling ine, and Taps a Abrasive Whe	ngle-Point ng (Verti- er), Shap- lulti-Point Machine, and Dies. eels, Hori-			

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

	Syllabus : M. Tech (Manufacturing Engineering) Semester A
	 Cylindrical-Grinding Machine, and Centerless Grinding Machines. Machines Tools Using Fine Abrasive Tools for Finishing: Honing Machines, Lapping Machines.
UNIT 2	Mechanics of Metal Cutting: Chipping action; Cutting parameters; Orthogo- nal and Oblique cutting; Mechanism and Types of chips; Cutting forces and Stresses; Power and Energy; Heat and Temperature; Mechanics of Turning, Drilling and Milling.
UNIT 3	Cutting Tool Technology, Chip Control and Economics: Tools Materials, Tool Geometry, and Tool Life; Cutting Fluids; Economics of Metal Cutting Processes; and Surface Roughness.
UNIT 4	Abrasive Machining- Grinding and Finishing: Mechanics of Metal Grinding Grinding Wheel, its specification, and Chip Formation; Grinding Forces and Power Grinding Temperature; Conventional Abrasive Finishing Processes (CAFP): Honing Lapping, Buffing, and Superfinishing. Example Conventional Abrasive Finishing
UNIT 5	Introduction to Conventional Micromachining: Need and Classification; Process Principles and Applications of Conventional Micromachining, Abrasive Micromachining.
Textbooks:	
Ũ	G. S. Sekhon and Nitin Seth, <i>Fundamentals of Metal Cutting and Machine Tools</i> , Age International Publications, Delhi, 2015.
A. Ghosh an 2010.	d A. K. Mallik, <i>Manufacturing Science</i> , 2 nd Ed., East-West Press Private Limited,
V. K. Jain, Ir	ntroduction to Micromachining, 2 nd Ed., Narosa Publishers, New Delhi, 2009.
Reference B	ooks:
	n and S.R. Schmid, <i>Manufacturing Processes for Engineering Materials</i> , 6 th Ed., ications, 2016.
•	othroyd and Winston A. Knight, <i>Fundamentals of Machining and Machine Tools</i> , Press, Taylor & Francis Group, 2013.
G. K. Lal, <i>Ii</i> ited, New De	<i>ntroduction to Machining Science</i> , 2 nd Ed., New Age International Publisher Lim- elhi, 2007.
	r, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; 3 rd

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS : M. TECH (MANUFACTURING ENGINEERING) SEMESTER A

IP 82012: ADVANCED MACHINING PROCESSES

PE	RIOD WEE) PER CK	CR	EDIT	ſS		MAX	XIMUM		
L	Р	Tu	Т	Р	Tu	Т	HEORY	PR	ACTICAL	TOTAL MARKS
						CW	END SEM	SW	END SEM	
03	02	00	03	02	00	30			60	100
Note:	Each l	ecture is c	of one ho	our dur	ation.		•	•	•	

COURS	SE OBJECTIV	Ultrasonic machining	Ultrasonic machining, Jet Machining, Electrochemical machining, Electro discharge machining processes, and their modifications into hybrid processes							
COURS	SE OUTCOME	S On successful comple	On successful completion of the course, the student should be able-							
CO 1	To learn the fu	ndamentals and working pri	mentals and working principles of different Advanced Machining Processes.							
CO 2	•	l evaluate the performance neering Materials.	of Advanced Machinin	g Processes for machining of different						
CO 3	To identify Ad Engineering M		es for creating desired fe	atures in different Advanced						
CO 4	To illustrate performance.	he machining performanc	e characteristics and	analysis for optimization of process						
CO 5	To analyze and	evaluate the Process Princi	iple and applications of I	Hybrid machining processes.						
СО-РО	Mapping									
Cours	se Outcomes	PO1	PO2	PO3						
	CO1	3	2	0						
	CO2	3	2	2						
	CO3	2	2	2						
	CO4	2	2	2						
	CO5	2	1	1						
COURS	E ASSESSME	NT : Students will be assess	ed as following:							
Theory p	paper End S	emester Exam: 70 Marks								
		nuous assessment: 30 Mar 5 Marks, and Regularity: 5		s:15 Marks, Assignment:5 Marks,						
COURS	E CONTENTS									
UNIT 1	Mach Tool I Applie	ning Processes; Process P Design of Ultra-Sonic Mach	rinciple, Applications, and the second secon	d and Classification of Advanced Equipment, Process Analysis and ining Processes: Process Principle, e Water Jet Machining (AWJM), g (WJM).						
UNIT 2	Chem	ical Energy-based Machi	ining Processes: Proce	ss Principle, Applications, Equip-						

	SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE
	Syllabus : M. Tech (Manufacturing Engineering)
T	Semester A
	ment, Process Analysis and Tool Design of Electro-Chemical Machining (ECM); Chemical Machining Processes: Process Principle, Applications, Equipment, Process Parameters of Chemical Milling (CHM), Chemical Engraving (CHE), Chemical Blanking (CHB), and Photochemical Machining (PCM).
UNIT 3	Thermal Energy-based Machining Processes: Process Principle, Applications, Equipment, Process Analysis and Tool Design of Electro-Discharge Machining (EDM); Beam Machining Processes: Process Principle, Applications and Equipment for Laser Beam Machining (LBM), Electron Beam Machining (EBM), Ion Beam Machining (IBM), and Plasma Beam Machining (PBM).
UNIT 4	Hybrid Machining Processes: Introduction, need, and classification of Hybrid Machining Processes; Process Principle, Applications and Equipment for Combined Machining Pro- cesses (Electrochemical Grinding (ECG), Electrochemical Deburring (ECD), Electrochem- ical Honing (ECH), Electrochemical Superfinishing, Electrical Discharge Diamond Grind- ing (EDDG), Electrolytic Magnetic Abrasive Machining (EMAM), and Electro-Chemical Discharge Machining (ECDM)) and Assisted Machining Processes (Ultrasonic Assisted EDM and ECM as well as Laser Assisted EDM and ECM).
UNIT 5	Non-Conventional Finishing and Micromachining: Need and Classification; Process Principle, Applications and Equipment for Abrasive Flow Finishing (AFF), Magnetic Abrasive Finishing (MAF), Magneto-Rheological Finishing (MRF); Micromachining: Pro- cess Principle and Applications of Non-Conventional Micromachining and Combined Mi- cromachining.
Textbooks:	
V. K. Jain, Ad	dvanced Machining Processes, Allied, New Delhi, 2004.
P. K. Mishra,	Nonconventional Machining, Narosa Publishing House, New Delhi, 2014.
A. Ghosh and	A. K. Mallik, Manufacturing Science, 2 nd Ed., East-West Press Private Limited, 2010.
P. C. Pandey	and H. S. Shan, Modern Machining Processes, TMH Publishing Limited, New Delhi, 2008.
Reference Bo	ooks:
Hassan Abde	l-Gawad El-Hofy, Advanced Machining Processes, McGraw-Hill Companies, USA, 2005.
V. K. Jain, In	troduction to Micromachining, 2 nd Ed., Narosa Publishers, New Delhi, 2009.
M.P. Groover	r, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; 3rd Ed., Wiley India

Pvt. Ltd., New Delhi, 2012

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

SYLLABUS: M. TECH (MANUFACTURING ENGINEERING) Semester A

IP 82013: COMPUTER-AIDED MANUFACTURING (CAM)

	PERIOD PER WEEK			REDI			MAXIMUM MARKS						
L	P	Tu	Т	T P Tu		1	THEORY	PR	ACTICAL	TOTAL MARKS			
03	02	00	03	02	00	CW	END SEM	SW	END SEM	100			
						30	70	40	60				
o te: Ea	ch lectu	re is of on	e hour	durati	on.								
COURSE OBJECTIVE			Planı flexil	To apply knowledge about Computer Aided Quality control and Process Planning Control. Students will be able to design flexible manufacturing cell after carrying out Group technology study and finally creating FMS.									
COUI OUT	RSE COMES	}	On s	succes	ssful co	mpletio	on of the course	e, the st	udent should	l be able-			
CO 1		arn the f NC machi		entals	of va	rious c	ontrol system	s and s	sensing actu	nation system			
CO 2	To lea	rn and ex	ecute th	ne bas	ic NC (Codes/(Commands to p	program	n NC/CNC N	Aachines.			
CO 3	To con	mprehend	fundar	nenta	l knowl	ledge of	f FMS Systems	s, Grouj	p Technolog	y, and CAPP.			
CO 4		mprehend ise manag				ools &	CAM, CIM V	Wheel i	ntegration 7	Fechnologies, a			
CO 5	To app	ply the kn	owledg	ge of C	CAQC,	CAI &	CAT for conta	act and	non-contact	inspection.			
Cour	se Outc	omes		PO1			PO2			PO3			
	CO1			2			1			0			
	CO2			2		2				2			
	CO3			2 2			3		2 3				
	CO4						1						
	CO5			2			2			2			
COUR	RSE ASS	SESSME	NT : St	udent	s will b	e asses	sed as followir	ng:					
Theory	paper	End Ser	emester Exam: 70 Marks										
			ous assessment: 30 Marks (Two mid-term tests:15 Marks, Assignment:5 Quiz: 5 Marks, and Regularity: 5 Marks)										
COUR	RSE CO	NTENTS											
Drives an of CNC Actuation			and Co Syster on Syst	ntrols ns. Fe tems:	Interpo eedback Hydrau	olators f c Devic ilic, Pn	for CNC Mach es: Resolvers,	ine Too Encode	ols. Numeric ers, and Indu	Control System cal Control, Typ actosyns; Senso Computer Cont			
UNIT	2		-		-		omponents of		NC System,	Specification			

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

	Syllabus: M. Tech (Manufacturing Engineering)
	SEMESTER A
	of CNC System, Classification of NC/CNC Machines, Tape, Tape Codes and Tape Readers used in NC Machines Constructional Details of CNC Machines. Axis Designation, NC/CNC Tooling. Fundamentals of Manual Part Programming, Types of Format, Word Address Format Manual Part Programming for Drilling, Turning and Milling Operations, Subroutines, Do Loops, Canned Cycles, and Parametric Subroutines. Computer Assisted Part Programming: Need, List of Computer Assisted Programming Languages, and Automated Programmed Tools Language: Its Types of Statement, Command and Programming CAD based CNC Programming using CAM Software.
UNIT 3	Flexible Manufacturing System (FMS): Introduction of FMS, Need of FMS General Considerations for FMS, Types of FMS, Flexibilities, their Measurements, Various Mathematical Techniques for Flexibility Measurements Computer Aided Process Planning (CAPP): Types of Process Planning System Advantages of CAPP; Manufacturing Cells, Cellular v/s Flexible Manufacturing Application of Just-In-Time and Group Technology to FMS.
UNIT 4	Computer Integrated Manufacturing Systems (CIMS): Basic Information of CIMS, Hardware and Software Requirements for CIMS, Benefits, Scope and Needs, CIMS Wheel, Elements of CIMS and their Role, Computer Technology and Manufacturing, Database Requirement, Fundamentals of Communication. Data Base Management, Database Models, DBMS Architecture, SQL, Steps to Implement CIM, Its Management, Personnel, Emerging Technologies like Expert Systems, Computer Vision, Lasers in Manufacturing (Machinery and Metrology) Multimedia Communications, etc. CAD/CAM Integration Programming, Post Processors.
UNIT 5	Computer-Aided Quality Control (CAQC): Use of Computers in QC Computer Aided Inspection (CAI): Contact Inspection Methods, Non-Contact Inspection, In-Process-Gauging, Online Inspection and Quality Control, Machine Vision System, Computer Aided Testing (CAT).
Textbooks:	
P. Radhakris	han, S. Subramaniyam, CAD CAM and CIM, 3rd Ed., New Age International, 2008.
Paul G. Ranl	xy, Computer Integrated Manufacturing, Prentice Hall International, 1986.
S. Kant Vajp	bayee, Computer Integrated Manufacturing, Prentice Hall of India, 1995.
Reference B	ooks:
M.P. Groove	er, Automation, Production Systems and CIM, 4th Ed., Pearson Education, 2016.
David Bedw 1998.	orth, Computer Integrated Design and Manufacturing Tata McGraw Hill, New Delhi
P. Rao and I tion, New De	N. Tewari and T. K. Kundra, <i>Computer Aided Manufacturing</i> , McGraw Hill Educa elhi, 2017.
William W. New Jersey,	Luggen, <i>Flexible Manufacturing Cells and System</i> , Prentice Hall, England Cliffs 1991.
T. C. Chang,	R. A. Wysk and H. P. Wang, 3rd Ed., Computer aided Manufacturing, Pearson, 2008

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

SYLLABUS: M. TECH (MANUFACTURING ENGINEERING) SEMESTER A

IP 82214: COMPOSITE MATERIALS (Elective-I)

	PE	RIOD WEE		CR	EDIT	S		MAX	IMUM I	MARKS			
	L	Р	Tu	Т	Р	Tu	Т	HEORY	PRA	ACTICAL	TOTAL MARKS		
	02	00	00	0.2	00	00	CW	END SEM	SW	END SEM	100		
	03	00	00	03	00	00	30	70	-	-			
			period i										
CO	URS	E OBJ	ECTIVE					sive knowledg				ics of	
CO	URS	E OUI	COMES	S On	succes	sful co	ompletio	n of the course,	the stude	ent should be at	ole-		
CO	CO 1 To learn the concept of composite m						aterial ar	nd its importance	e over co	onventional mat	erials.		
CO	CO 2 To gain the method of fabrication of						different	t types of compo	site mat	erials.			
CO	CO 3 To learn analyze the different p conditions.						roperties	of composite	materia	als under diffe	erent environ	mental	
CO	D 4	To lear	n the med	chanical	behavi	or at t	he macro	o level of differe	nt types	of composite n	naterials.		
CO	D 5	To ana	lysis and	evaluate	the la	minate	ed comp	osites under diff	erent me	chanical loadin	g conditions.		
0	Cours	e Outc	omes		PO1	-		PO2			PO3		
		CO1		3				2		1			
		CO2		3				2		1			
		CO3		3				2		1			
		CO4			2			2			2		
		CO5			2			3	3				
CO	URSI	E ASSI	ESSMEN	T:Stud	ents w	ill be a	assessed	as following:					
The	ory pa	aper	End Se	emester E	Exam:	70 Ma	rks						
							Marks (Two mid-term tests:15 Marks, Assignment:5 Marks, ity: 5 Marks)						
CO	URSI	E CON	TENTS										
UNIT 1Introduction of Composite Material: classification and use: Classifications of Engineer Materials, Concept of composite materials, Matrix materials, Functions of a Matrix, Des Properties of a Matrix, Polymer Matrix (Thermosets and Thermoplastics), Metal mat Ceramic matrix, Carbon Matrix, Glass Matrix etc. Types of Reinforcements/Fibers: Role Selection or reinforcement materials, Types of fibres, Glass fibers, Carbon fibers, Aramid fil Metal fibers, Alumina fibers, Boron Fibers, Silicon carbide fibers, Quartz and Silica fib Multiphase fibers, Whiskers, Flakes etc., Mechanical properties of fibres. Material proper 										Desired matrix, ole and l fibers fibers,			
UN	IT 2		Comp conside Spray resin tr	osite Ma erations, up proce	terial Autoo ess, fil ouldir	Fabriclave ament ang, fila	ication description descripti description description description description description	ning a composite material and its engineering potential. cation Methods: Processing of Composite Materials: Overall suring, Other Manufacturing Processes like Lay up process, placement process, resin transfer moulding, Vacuum assisted nent winding, compression molding, sheet moulding, Injection moulding, rotational moulding, Pultrusion, pre-peg layer etc.					

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

	Syllabus: M. Tech (Manufacturing Engineering) Semester A							
	Manufacturing of Metal Matrix Composites: Layer composites and infiltration method, Manufacturing of Ceramic matrix composites: Hot isostatic processing.							
UNIT 3	Micromechanics: Fiber volume fraction, micro-mechanical relations, determination of strength and stiffness, Environmental effects-Hygro-thermal behavior.							
UNIT 4	Macromechanics: Basic stress-strain relationships for anisotropic materials, engineering constants for orthotropic materials, stress-strain relations for a lamina of arbitrary orientation, effective moduli, invariant properties of anorthotropic lamina, special cases of laminate stiffness, laminate strength analysis, the concept of inter-laminar stresses and delamination.							
UNIT 5	Failure Theories and Damage Mechanics: Failure mechanisms, maximum stress theory, maximum strain theory, Tsai- Hill theory, Tensor polynomial failure criterion, first ply failure theory, Introduction to damage theory based on continuum damage mechanics.							
Text Books	L. L. Drautman, K. Chandrashalikana, Anglunia and Darformanas of Eihan Compositor, Willow							

B.D. Agarwal, L.J. Broutman, K. Chandrashekhara, Analysis and Performance of Fiber Composites, Wiley, India.

P.K. Mallick, Fiber-reinforced Composites Materials, manufacturing, and design, CRC Press

Reference Books:

Carl T. Herakovich, Mechanics of fibrous composites, John wiley & sons.

R. F. Gibson, Principles of Composite Material Mechanics, McGraw Hill Inc.

R. M. Jones, Mechanics of Composite Materials.

Stephen W.Tsai and H. Thomas Hahn, Introduction to Composite Material.

J. N. Reddy and A.V. Krishna Moorty, Composite Structures, Testing, Analysis and Design.

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

SYLLABUS: M. TECH (MANUFACTURING ENGINEERING) Semester A

ME 82014: FINITE ELEMENT METHOD

	IOD PE WEEK	ĸ	CI	REDI	TS		MA	XIMU	M MARKS			
L	Р	Tu	Т	т р	Tu]	THEORY	PR	ACTICAL	TOTAL MARKS		
04	00	00	03	_	_	CW	END SEM	SW	END SEM	100		
04	00	00	0.0			30	70	-	-	100		
	JRSE ECTIVI	E	diffe	The course is designed to impart computer aided skill for applying different DOE based techniques to solve real life engineering science problems.								
	JRSE COME	S	Ons	On successful completion of the course, the student should be able-								
CO	deper	ndence as	Static of	or Dy	namic,	Linear		Studer		, or 3-D, time nderstand deriv		
CO		They will	•					-	Ũ	axial bar prob n finite elemer		
CO .		e beam pr ents to sol		-				ll also	learn to extend	d bar and bear		
			shape functions for lower and higher order two dimensional and quadrilateral elemen ill also learn writing governing differential equations for two dimensional problems.									
CO 4		-				-			-			
CO	and v 5 Write learn	vill also le e equation solving e	earn wri	ting g	overnir of dyna	ng differ amic sy	ential equations stems using fi	ns for ty	wo dimensiona	ll problems. They will als		
CO :	and v 5 Write learn •O Map	vill also le e equation solving e ping	earn wri	ting g otion ue and	overnir of dyna d force	ng differ amic sy	rential equatio stems using fi n problem usin	ns for ty	wo dimensiona ement method. e element meth	al problems. They will als nod.		
CO :	and v 5 Write learn	vill also le e equation solving e ping	earn wri	ting g	overnir of dyna d force	ng differ amic sy	ential equations stems using fi	ns for ty	wo dimensiona ement method. e element meth	ll problems. They will als		
CO :	and v 5 Write learn •O Map	vill also le e equation solving e ping	earn wri	ting g otion ue and	overnir of dyna d force	ng differ amic sy	rential equatio stems using fi n problem usin	ns for ty	wo dimensiona ement method. e element meth P	al problems. They will als nod.		
CO :	and v S Write learn PO Map	vill also le e equation solving e ping	earn wri	ting g otion ue and PO1	overnir of dyna d force	ng differ amic sy	rential equatio stems using fi n problem usin PO2	ns for ty	wo dimensiona ement method. e element meth P	al problems. They will als nod. O3		
CO :	and v Write learn PO Map urse Out CO1	vill also le e equation solving e ping	earn wri	ting g otion ue and PO1 3	overnir of dyna d force	ng differ amic sy	rential equationstems using fin problem using PO2	ns for ty	wo dimensiona ement method. e element meth P	al problems. They will als nod. 03		
CO :	and v Write learn PO Map urse Out CO1 CO2	vill also le e equation solving e ping	earn wri	ting g otion ue and PO1 3 3	overnir of dyna d force	ng differ amic sy	rential equationstems using fin problem using PO2 2 2 2	ns for ty	wo dimensiona ement method. e element meth P	al problems. They will als nod. 03 1 1		
CO :	and v Write learn PO Map urse Out CO1 CO2 CO3	vill also le e equation solving e ping	earn wri	ting g otion ue and PO1 3 3 3	overnir of dyna d force	ng differ amic sy	rential equationstems using fin problem using fin problem using fin problem using fin problem using	ns for ty	wo dimensiona ement method. e element meth P	al problems. They will als nod. 03 1 1 1		
CO-F Cou	and y Write learn O Map urse Out CO1 CO2 CO3 CO4 CO5	vill also le e equation solving e ping comes	earn wri	ting g ption ue and PO1 3 3 3 3 3 3 3	overnin of dyna d force	ng differ amic sy vibratio	rential equationstems using fin problem using fin problem using fin problem using fin problem using the problem using th	ns for twinite ele	wo dimensiona ement method. e element meth P	al problems. They will als nod. 03 1 1 1 1 1		
CO-F Cou	and y Write learn O Map urse Out CO1 CO2 CO3 CO4 CO5	vill also le e equation solving e ping comes	earn wri	representation of the second s	overnir of dyna d force ts will b	ng differ amic sy vibratio	rential equationstems using fin problem using fi	ns for twinite ele	wo dimensiona ement method. e element meth P	al problems. They will als nod. 03 1 1 1 1 1		
CO-F Cou	and y Write learn O Map urse Out CO1 CO2 CO3 CO4 CO5 RSE AS	vill also le e equation solving e ping comes sessessme End Se Contin	earn wri ns of mo igenvalu CNT : St emester uous as	ting g otion ue and PO1 3 3 3 3 3 3 tudent Exam	ts will to hent: 30	ng differ amic sy vibratio	rential equationstems using fin problem using the second	ns for two inite elements for two inite elements for two inite elements of the second	wo dimensiona ement method. e element meth P	al problems. They will als nod. 03 1 1 1 1 1		
CO-F Cou	and v Write learn PO Map urse Out CO1 CO2 CO3 CO4 CO5 RSE AS	vill also le e equation solving e ping comes sessessme End Se Contin	earn wri ns of mo igenvalu 2NT : St emester uous as ,Quiz: 5	ting g otion ue and PO1 3 3 3 3 3 3 tudent Exam	ts will to hent: 30	ng differ amic sy vibratio	rential equationstems using fin problem using fin problem using fin problem using fin problem using the problem using th	ns for two inite elements for two inite elements for two inite elements of the second	wo dimensiona ement method. e element meth P	al problems. They will als nod. 03 1 1 1 1 1 1 1		
CO-F Cou	and v Write learn O Map urse Out CO1 CO2 CO3 CO4 CO5 RSE AS ry paper	vill also le e equation solving e ping comes SESSME End Se End Se Contin Marks, DNTENTS	earn writ ns of mo igenvalu ENT : St emester uous as Quiz: 5 S uction to as. Met	ting g otion ue and PO1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5	ts will the second seco	ng differ amic sy vibratio	rential equationstems using fin problem using a set of the s	ns for tv inite ele ng finite ng fin	wo dimensiona ement method. e element meth P P sts:15 Marks, nematical mod	al problems. They will als nod. 03 1 1 1 1 1 1 Assignment:5 elels of physica ch for solvin		

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

	Syllabus: M. Tech (Manufacturing Engineering) Semester A
	Rayleigh-Ritz method. Introduction to finite element modelling of one dimensional problems in statics. Finite element for bar problems, Linear and quadratic shape functions. Convergence criterion.
UNIT 3	Finite element formulation for truss and frame problems. Formulation of Beam problems. Numerical integration, Coordinate transformation.
UNIT 4	Plane stress and plane strain problems, Axisymmetric Formulation, Two dimensional problems using constant strain triangles and higher order elements, iso-parametric formulation.
UNIT 5	Dynamic analysis, Equations of motion, Mass Matrices, Free vibration analysis, Natural frequencies of longitudinal, transverse and torsional vibration, Introduction to transient field problems.
Text Books	
Textbook of Fi	inite Element Analysis, P. Seshu, Eastern Economy Edition
Finite Element	s in Engineering, Chandrupatla and Belegundu, Prentice Hall India
Reference Boo	oks:
Finite Element	Analysis, C S Krishnamoorthy, Tata McGraw-Hill
Finite Element	Method, J. N. Reddy, Tata Mc Graw-Hill

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

SYLLABUS: M. TECH (MANUFACTURING ENGINEERING) SEMESTER A

IP 82451: Computer Aided Manufacturing Lab

List of Experiments

- 1. 2D drawing creation in Auto CAD
- 2. Dimensioning
- 3. Blocks and Layers
- 4. Surface Modeling
- 5. Solid Modeling using CSG
- 6. Paper Space layouts
- 7. Auto LISP Programming Interface
- 8. Automated drawing generation using Auto LISP programming interface,
- 9. Customizing AutoCAD
- 10. CNC Programming for CNC lathe Mirac
- 11. CNC Programming for CNC milling Triac
- 12. Robot Programming for Move master for pick and place and operations and
- 1. interfacing with machine work
- 13. FMS Configuration, Programming and Simulation

Books & References Recommended:

- 1. Mastering AutoCAD2000, George Omura
- 2. ABC of Auto LISP, George Omura
- 3. Robot RVM1 Movemaster Manual
- 4. FMS Manual
- 5. CNC Programming Manual TRIAC
- 6. CNC Programming Manual MIRAC

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING Shri G S Institute of Technology and Science Indore Syllabus: M. Tech (Manufacturing Engineering) Semester A

IP 82452: Advanced Machining Processes Lab

List of Experiments

- 1. To study EDM machine and sinking hole on a specimen using EDM process.
- 2. To study ECM machine and creating hole on a specimen using ECM process.
- To study ECDM experimental setup and sinking hole on Pyrex Glass specimen using Sinking-ECDM process.
- To Compare hole sinking and drilling ECDM processes by creating hole on Pyrex Glass Specimen.
- 5. To create different profile of grooves on a specimen using EDM machine.
- 6. To study the different variants of EDM process.
- 7. To compare EDM process with Near dry EDM process.
- 8. To study Micro-EDM machine and drilling hole on a specimen using Micro-EDM.
- 9. To study Ultrasonic Machine and making hole on a specimen using USM process.
- 10. To compare hole sinking and drilling USM processes by creating hole on a Specimen of hard and brittle material.

Books & References Recommended:

- Hassan Abdel-Gawad El-Hofy, *Advanced Machining Processes*, McGraw-Hill Companies, USA, 2005.
- 2. V. K. Jain, Advanced Machining Processes, Allied, New Delhi, 2004.
- 3. P. K. Mishra, Nonconventional Machining, Narosa Publishing House, New Delhi, 2014.
- A. Ghosh and A. K. Mallik, *Manufacturing Science*, 2nd Ed., East-West Press Private Limited, 2010.
- 5. V. K. Jain, Introduction to Micromachining, 2nd Ed., Narosa Publishers, New Delhi, 2009.

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE Syllabus: M. Tech (Manufacturing Engineering) Semester A

ME 82453: Finite Element Method Lab

List of Experiments

- 1. To solve Finite Element Equations using Gauss Elimination Method using MATLAB Programming
- 2. To prepare solid modal given geometry and perform meshing of the solid modal
- 3. To perform stress analysis of a given structural member with given boundary conditions
- 4. To perform thermal stress analysis of a given structural member with given boundary conditions

Books & References Recommended:

- 1. Amos Gilat, MATLAB an Introduction with Applications, 4th Ed., Wiley India Edition, 2014.
- Young W. Kwon and Hyochoong Bang, Finite Element Method using MATLAB, 2nd Ed., CRC Press, 2000.
- 3. J. N. Reddy, *An Introduction to The Finite Element Method*; 3rd Ed., Tata McGraw-Hill Publishing Company, New Delhi, 2006.
- 4. S.S. Rao, Finite Element Method in Engineering, Elsevier Pergaman Press, 1997.

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS : M. TECH (MANUFACTURING ENGINEERING) SEMESTER B

IP 82501: RAPID PROTOTYPING AND TOOLING

ERIO	D PERV		CRED			1	MUM MARI				
L	Р	Tu	Т	Р	Tu	THEC	DRY	PRAC	CTICAL	TOTAL MARKS	
03	00	00	03	-	-	CW	END SEM	SW	END SEM		
						30	70	-	-	100	
ote: Ea	ach lectu	re is of o	ne hour	durat	ion.		I				
COU OBJE	RSE ECTIVE	C							and skill of ra equisite accura		
COUI OUT	RSE COMES	On s	succes	ssful co	mpletio	on of the cours	e, the st	tudent should l	be able-		
CO 1	\mathcal{O}	ain the ba ous rapid p				erent typ	bes of additive	manuf	acturing proce	sses along wit	
CO 2		levelop p uct design				ole of a	additive manu	ıfacturi	ng and rapid	prototyping i	
CO 3	with								totyping and b alization to t		
CO 4		ain the kr netallic a					surface finish,	stresse	s induced in t	he metallic ar	
CO 5	To de	evelop co	ncepts o	of the	differe	nt type o	of rapid toolin	g techn	iques.		
Cour	se Out	comes		PO1			PO2		Р	03	
	CO1			2			2			1	
	CO2			2			2	2			
	CO3			3		2				2	
	CO4			2			1			2	
	CO5			2			1			1	
COUF	RSE AS	SESSME	NT : St	udent	s will t	e asses	sed as followin	ng:			
Theory	y paper	End Se	mester	Exam	: 70 Ma	arks					
	Continuous assessment: 30 Marks (Two mid-term tests:15 Marks, Assignme Marks,Quiz: 5 Marks, and Regularity: 5 Marks)									Assignment:5	
COUF	RSE CO	NTENTS	5								
UNIT	1	Deposi	acturing tion M	g Bas odelir	sed Rang (FD	apid P M), Sel	rototyping S	ystems:	cturing Proce Stereo-Litho ng (SLS), La	ography, Fus	
UNIT	2	Develo	pment;	Solie	d Moo	leling	-		ping in Produ dditive Manu	-	

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

	Syllabus : M. Tech (Manufacturing Engineering) Semester B								
UNIT 3	Process Planning for Rapid Prototyping, STL File Generation Defects in STL Files and Repairing Algorithms, Slicing and Various Slicing Procedures.								
UNIT 4	Accuracy Issues in Additive Manufacturing, Properties of Metallic and Non-Metallic Additive Manufactured Surfaces, Stress Induced in Additive Manufacturing Processes, Surface Roughness Problem in Rapid Prototyping, Part Deposition Orientation and Issues Like Accuracy, Surface Finish, Build Time, Support Structure, Cost etc.								
UNIT 5	T5 Rapid Tooling Techniques such as Laminated Metallic Tooling, Direct Metal Laser Sintering, Vacuum Casting etc.								
Textbooks:									
	K. F. Leong, and C. S. Lim, <i>Rapid prototyping: Principles and applications</i> , 3 rd Ed., ntific Publishers, 2010.								
A. Gebhard	t, Rapid prototyping, Hanser Gardener Publications, 2003.								
Chua Chee 2003.	Kai and Leong Kah Fai, Rapid Prototyping: Principles & Applications, WorldScientific,								
	David W Rosen, Brent Stucker, Additive Manufacturing Technologies: Rapid to Direct Digital Manufacturing, Springer, 2010.								
Reference	Books:								
Ali K. Kamı	rani, Emand Abou el Nasr, Rapid Prototyping: Theory & Practice, Springer, 2006.								

D.T. Pham, S.S. Dimov, *Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling*, Springer, 2001.

Andreas Gebhardt, Understanding Additive Manufacturing: Rapid Prototyping, RapidTooling, Rapid Manufacturing, Hanser Publishers, 2011.

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS : M. TECH (MANUFACTURING ENGINEERING) SEMESTER B

IP 82502: CASTING AND FORMING PROCESSES

PE	RIOE WEF) PER CK	CF	REDI	ГS	MAXIMUM MARKS				
L	Р	Tu	Т	Р	Tu	THEORY		PR	ACTICAL	TOTAL MARKS
						CW	END SEM	SW	END SEM	
03	00	00	03	-	-	30	70	-	-	100
Note:	Each l	ecture is o	of one he	our du	ration.	1	1		1	1

COURS	SE OBJE	CTIVE	It is aimed to provid	e understanding casting and	forming processes andability to					
COUR		01172	-	analyse the process performance.						
COURS	SE OUTC	OMES	On successful comple	On successful completion of the course, the student should be able-						
CO 1	To gain the knowledge of the casting and solidification process and evaluate the fluidity of metal and solidification of different shape casting.									
CO 2	To develop the concept of riser and gating design along with the Application of Geometrical Programming and review of casting design.									
CO 3	To under	stand the	e various moulding proce	esses, Inspection, and advance	e casting techniques.					
CO 4			fferent forming processes working processes.	s along with yield criteria of 1	netals and theories of failure and					
CO 5		punchin	g, and blanking along v		lling, forging, drawing, extrusion, ation and various advanced metal					
СО-РО	Mapping									
Cours	se Outcon	nes	PO1	PO2	PO3					
	CO1		3	2	2					
	CO2		3	2	2					
	CO3		2	1	2					
	CO4		2	2	2					
	CO5		2	1	2					
COURS	SE ASSES	SMENT	: Students will be assess	sed as following:						
Theory p	paper	End Sem	nester Exam: 70 Marks							
	Continuous assessment: 30 Marks (Two mid-term tests:15 Marks, Assignment:5 Marks, Quiz: 5 Marks, and Regularity: 5 Marks)									
COURS	E CONTI	ENTS								
UNIT 1	Introduction of Metal Casting: Classification of Casting Processes, Solidification: Solidification of Pure Metals and Alloys, Nucleation and Growth in Alloys, Solidification of Actual Castings, Progressive and Directional Solidification, Centerline Feeding Resistance, Rate of Solidification, Chvorinov's Rule, Electrical Analogy of Solidification Problem; Fluidity- Measurement of Fluidity, Effects of Various Parameters on Fluidity.									
UNIT 2	Risering and Gating System: Riser Design, Risering Curves, NRL Method of Riser Design, Feeding Distance, Risering of Complex Casting, Risering of Alloys Other than Steel, Recent Developments in									

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

SYLLABUS: M. TECH (MANUFACTURING ENGINEERING)

	SEMESTER B
	Riser Design by the Application of Geometrical Programming; Gating System Design and their Characteristics, the Effects of Gates on Aspiration, Turbulence and Dross Trap, Recent Trends; Pattern and Casting Design: Pattern Design, Recent Developments in Pattern Design, Materials and Construction; Casting Design Considerations- Review of Casting Design, Recent Trends.
UNIT 3	 Moulding, Inspections and Advanced Casting Processes: Low Pressure and Ferrous Die Casting, High Pressure Moulding, Full Mould Process, Flaskless Moulding, Hot andCold Box Moulding, Ceramic Shell Moulding, Casting Defects: Residual Stresses, Hot Tears and Cracks, Stress Relief, Defects and their Causes and Remedies, Parameters Affecting Surface Finish, Inspections: Testing of Sand, Mulling Index, Moldability Index, Compactability; Deformability; Review of X-Ray and Gamma Ray Radiography, Magnetic Particle, Die Penetrant and Ultrasonic Inspection etc.; Advanced Casting Processes: Evaporative Pattern Casting, Vacuum Mould Casting, Investment Casting Process, Continuous Casting, Squeeze Casting, Ceramic Shell Casting.
UNIT 4	Introduction of Forming and Process analysis: Stress/Strain, Strain-Rate, Yield Criteria of Metals and Theories of Failure, Classification of Metal Forming, Formability, Theories of Friction and Lubrication; Process Analysis: Analysis of Metal Working Processes Such as Slipline Field Theory, Upper Bound Solution, and Stab Methods.
UNIT 5	 Mechanics of Forming Processes: Rolling: Determination of Rolling Pressure, Roll Separating Force, Driving Torque and Power, and Power Loss in Bearings; Forging: Determination of Forces in Strip Forging and Disc Forging; Drawing- Determination of Force and Power, Determination of Maximum Allowable Reduction; Deep Drawing Force Analysis, Analysis of Tube Drawing Process with Fixed and Moving Mandrel, Tandem Tube Drawing; Extrusion: Determination of Work Load from Stress Analysis and Energy Consideration, Power Loss, Hydrostatic Extrusion; Bending: Determination of Work Load and Spring Back; Punching and Blanking: Mode of Metal Deformation and Failure, Two-Dimensional Deformation Model and Fracture Analysis, Determination of Working Force. Advanced Metal Forming Processes: High Energy Rate Forming (HERF), Electro-Magnetic Forming, Explosive Forming, Electro-Hydraulic Forming, Stretch Forming, And Contour Roll Forming.
Textbooks:	

R.W. Heine, C.R. Loper, and P.C. Rosenthal, Principles of Metal Casting, TMH, New Delhi.

P. L. Jain, Principles of Foundry Technology, TMH, New Delhi.

A. Ghosh and A. K. Mallik, *Manufacturing Science*, 2nd Ed., East-West Press Private Limited, 2010.

Reference Books:

S. Kalpakjian and S.R. Schmid, Manufacturing Processes for Engineering Materials, 6th Ed., Pearson Publications, 2016.

M.P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; 3rdEd., Wiley India Pvt. Ltd., New Delhi, 2012.

B. Avitzur, Metal Forming: Processes and Analysis, McGraw Hill Book Company, UK.

R. H. Wagoner and J. L. Chenot, Metal Forming Analysis, Cambridge University Press, NewYork, U.S.A.

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS : M. TECH (MANUFACTURING ENGINEERING) SEMESTER B

IP 82503: WELDING TECHNOLOGY

PERI W	CI	REDI	ГS		MA	XIMU	M MARKS				
L	Р	Tu	Т	Р	Tu]	THEORY	PR	ACTICAL	TOTAL MARKS	
03	00	00	03	-	-	CW 30	END SEM 70	SW	END SEM	10	
lote: Ea	ch lectu	re is of oi	he hour	durati	ion.	50	70			0	
COUI OBJE	RSE CTIVE						rovide concep cess performat		ferent welding	g processes a	nd
COU					-	-	<u>^</u>		udent should b	be able-	
CO 1							fication of we joints with van		processes alor eld symbols.	ng with vario	ous
CO 2		ain the k ples and 1			f diffei	ent typ	bes of arc we	elding	processes and	l their work	ing
CO 3		mprehend with diff						esses ai	nd friction wel	ding techniq	ues
CO 4		velop the estructive		ency i	n the di	fferent	weld joint testi	ing tech	nniques such as	s destructive	and
CO 5	of rea		welding						ed Zone (HAZ metals such as		
Cour	se Outo	comes		PO1			PO2		Р	03	
	CO1			2			1			2	
	CO2			3			2			2	
	CO3			2		1			1		
	CO4			2			2			2	
	CO5			2			2			3	
COUR	SE AS	SESSME	NT : St	udent	ts will b	e asses	sed as followir	ng:			
Theory	paper	End Se	mester	Exam	: 70 Ma	arks					
							s (Two mid-te ity: 5 Marks)	erm tes	sts:15 Marks,	Assignment:	5
COUR	SE CO	NTENTS	5								
UNIT	1	Shieldir Welds a	ng Meth	ods, P d Join	hysics o	of Weld	ing, and Selecti	on of V	ing Processes; 1 Velding Power , Definitions and	Sources, Type	e of
UNIT	2	(MMA) Signific welding	Weldin ance of	g; Ga Flux- ungste	s Metal -Metal (Arc We Combina	elding; Pulsed Mation; Electrosla	AIG We	Processes; Ma elding; Submerg ding, Non-cons Transferred and	ged Arc Weldi umable electr	ing, ode

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

	Syllabus : M. Tech (Manufacturing Engineering) Semester B
UNIT 3	 Resistance Welding Processes: Introduction to Resistance welding, Arc generation, Types or resistance welding; Spot welding, Seam welding, Stud welding, Applications of resistance welding. Friction Welding: Friction Welding Process Variables, Welding of Similar and Dissimila Materials, Friction Welding of Materials With Inter Layer. Friction Stir Welding: Processes Parameters, Tool Geometry, Welding of Aluminiur Alloys, Friction Stir Welding of Aluminium Alloys and Magnesium Alloys, Micro-structur Analysis. Advanced Welding Processes: Details of Electron Beam Welding (EBW), Laser Beam Welding (LBW), Ultrasonic Welding (USW)
UNIT 4	Testing and Inspection of Weld Joints: Chemical Tests; Metallographic Tests; Hardness Tests; Mechanical Test For Groove and Fillet Welds-Full Section, Reduced Section and All Weld- Metal Tensile Tests, Root, Face and Side Bend Tests, Fillet Weld Break Tests, Creep & Fatigue Testing; Non-Destructive Testing of Weldments; Visual Inspection; Dye-Penetrar Inspection; Magnetic Particle Inspection; Ultrasonic Inspection Principle of Ultrasoni Testing, Radio-graphic Inspection- Principle of Radiography, X-Ray Tubes, Gamma-Ra Sources.
UNIT 5	Weldability of Metals: Solidification of Weld Metal; Heat Affected Zone (HAZ), Factor Affecting Properties of HAZ; Gas-Metal, Slag-Metal and Solid State Reactions in Weldin and their Influence on Soundness of Weld Joint; Definition of Weldability, Factor Affectin the Weldability of Steel Carbon Equivalent; Weldability of Steel, Cast Iron and Aluminiur Alloys of Commercial Importance, Failure Analysis of Welded Joints.
Textbooks:	
V. M. Radha	akrishnan, Welding Technology and Design, New Age International Pvt. Ltd., 2008.
R. S. Parmar	r, Welding Engineering and Technology, Khanna Publishers, 2005.
Reference B	looks:
Lancaster, T	the Metallurgy of Welding, 6th Ed., William Andrew Publishing, NY, 1999.
Robert W. N Wiley VCH,	Messler Jr., Principles of Welding: Processes, Physics, Chemistry, and Metallurgy, 1 st Ed. 1999.
S. Kou, Weld	ding Metallurgy, Wiley India Edition, 2005.

S. V. Nadkarni, *Modern Welding Technology*, Oxford IBH Publishers, 1996.

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS : M. TECH (MANUFACTURING ENGINEERING) SEMESTER B

ME 82504: MATERIALS AND METALLURGY

	PE	RIOD WEE		CI	REDIT	S		MAX	IMUM N	MARKS			
	L	Р	Tu	Т	Р	Tu	Т	HEORY	PRA	ACTICAL	TOTAL MARKS		
Ī	03	00	00	03			CW	END SEM	SW	END SEM			
	03	00	00	03	-	-	30	70	-	-	100		
			period i										
CO	URS	E OBJ	ECTIVI					impart the strue ssing used for in				ials and	
CO	URS	E OUI	COME	S On	succes	sful co	ompletio	n of the course,	the stude	ent should be at	ole-		
CO	01		•					tion of engineer tior crystal struc	•	erials and diffe	erent crystalli	ne and	
) 2							am, nucleation		and effect of a	llovingelemer	nte	
C	52	10 ana	iyze the	unicici	i types	or ph	ise ulagi	am, nucleation	KIIICUCS	and effect of a	inoyingetemet	115.	
) 3	To gain	n the kno	wladaa	of diffe	aront ta	mes of h	eat treatment teo	hniques	and their appli	cations		
C	55	10 gan		wieuge	or unit	fent ty	pes of fi		linques	and then appli	cations.		
CO								shape memory a	alloys, co	omposites, and	its application	s along	
<u> </u>			eir mecha	•	•			•	Drune	Matallunary II			
C			metallur		arious	extrac	uve me	tallurgy such a	is Pyro-	Metanurgy, H	yurometanurg	y, and	
C	Cours	e Outco	omes		POI	_		PO2			PO3		
		CO1			2			2			1		
		CO2			2			1			2		
		CO3			2			2	3				
		CO4			3			2			2		
		CO5			3		2 3						
CO	URSI	E ASSE	ESSMEN	T : Stu	dents w	ill be a	assessed	as following:					
The	ory pa	aper	End Se	emester	Exam:	70 Ma	rks						
			Contin	uous as	sessme	ent: 30	Marks	(Two mid-term	tests:15	5 Marks, Assig	gnment:5 Mar	·ks,	
			Quiz:	5 Marks	, and R	egular	ity: 5 Ma	arks)					
CO	URSI	E CON	TENTS										
UNI	IT 1		and Sec Cell, C Elemer Defects	condary Frystal Synts, Crys s and No	Bonds; ystems, tal Dire on-crysta	Crystal Atomic ctions alline S	lline and c Packing and Plan structure;	ls: Classification Non-crystalline r Factor, Co-Ordi es, Miller Indice Mechanisms of in Hardening.	naterials: nation N s, Stacki	Crystal Structur umbers, Crystal ng Sequence in	re, Space Lattic Structure for M HCP & FCC,	ce, Unit Metallic Crystal	
UNI	IT 2		Growth Recryst Diagram	n Kineti tallization m, Phase	cs, So and Gi Rule, I	lidificat rain Gro Binary	tion, Pe owth; Sol	: Types of Phase arlitic, Martensin id Solutions, Solu agrams, Isomorphiagram.	tic and ubility Li	Bainitic Trans mit; Effect of All	formation; Reloy Elements of	ecovery, n Phase	

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

	Syllabus : M. Tech (Manufacturing Engineering) Semester B
UNIT 3	Heat Treatment: Heat Treatment of Steels, TTT Diagram, CCT Diagram; Annealing, Normalizing, Hardening and Tempering, Austempering, Martempering, Hardenability, Precipitation and Age Hardening, Case Hardening, Carburizing, Nitriding, Cyaniding, Carbonitriding, Flame & Induction Hardening, Vacuum & Plasma Hardening.
UNIT 4	Advanced Material and Tools: Smart Materials Exhibiting Ferroelectric, Piezoelectric, Optoelectric, Semiconducting Behavior, Lasers and Optical Fibres, Photoconductivity and Superconductivity, Nano Materials, Biomaterials, Superalloys, Bearing alloys, Shape Memory Alloys, Composites and its Applications: MMCs, CMCs & PMCs; Metallography (Optical, TEM, and SEM), X Ray Diffraction, Mechanical Properties, Thermal analysis.
UNIT 5	Extractive Metallurgy: General Methods of Extraction, Pyro-Metallurgy; Calcinations, Roasting and Smelting, Hydrometallurgy; Leaching, Solvent Extraction, Ion Exchange, Precipitation, and Electrometallurgy; Electrolysis and Electro-Refining.
Text Books	
S. L. Kakani and	Amit Kakani, Material Science, New Age International Pvt. Ltd., New Delhi,2004.
A. Ghosh and H.	. S. Ray, <i>Principles of Extractive Metallurgy</i> , 2nd Ed., New Age International, 1991.

S.H. Avner, Introduction to Physical Metallurgy, 2nd Ed., McGraw Hill Book Company, 2017.

V. Raghavan, Materials Science and Engineering, 6th Ed., Prentice Hall of India Pvt. Ltd., 2015.

Reference Books:

Williams D Callister, *Material Science and Engineering*, 2nd Ed., Wiley India Pvt Ltd, RevisedIndian Edition 2014.

V. Raghavan, *Physical Metallurgy: Principles and Practice*, 3rd Ed., Prentice Hall of India Pvt.Ltd., 2016.

R. E. Small Man and A. H. W Ngan, *Physical Metallurgy and Advanced Materials*, 7th Ed., Butterworth-Heinemann, 2007.

U. C. Jindal, Material Science and Metallurgy, Dorling Kindesley Pearson Education, 2012.

B. K. Agarwal, Introduction to Engineering Materials, 1st Ed., TMH, New Delhi, 2007.

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

SYLLABUS : M. TECH (MANUFACTURING ENGINEERING)

SEMESTER B

Semester- A(Elective-I)

IP 82201: Experimental Design, Data Analysis and Quality Control

PERIOD PER WEEK			CI	REDI	ГS		MA	AXIMU	M MARKS			
L	Р	Tu	Т	Р	Tu	, ,	ГHEORY	PF	RACTICAL	TOTAL MARKS		
03	00	00	03	-	_	CW	END SEM	SW	END SEM	10		
00	00	00	Ű.			30	70	-	-	0		
COUI OBJE	RSE CTIVE		diffe	The course is designed to impart computer aided skill for applyind different DOE based techniques to solve real life engineering science problems.								
COUI OUT	RSE COMES		On s	succes	ssful co	mpletio	on of the cours	e, the st	tudent should b	be able-		
CO 1		in knowl outions.	ledge o	f the	basic o	concept	s of statistica	l techn	iques and diff	erent statisti		
CO 2	-	· ·	•				experimental ctor effects an	•	s for various ctions.	conditions a		
CO 3							Methods us esting etc.	sing di	fferent statisti	cal techniqu		
CO 4		ply the vise surface		respo	onse su	rface r	nethodologies	and ex	aperimental de	signs for fitt		
CO 5	To dev	velop the	proficie	ency i	n quali	ty of ex	perimental de	sign.				
CO-PO) Mapp	ing										
Cour	se Outc	omes		PO1			PO2		Р	03		
	CO1			3			1			2		
	CO2			2			2			2		
	CO3			3		1			2			
	CO4			2			1			2		
	CO5			2			2			3		
COUR	SE ASS	SESSME	NT : St	udent	ts will t	be asses	sed as followi	ng:				
Theory	paper	End Se	mester	Exam	: 70 M	arks						
							s (Two mid-t rity: 5 Marks)	erm tes	sts:15 Marks,	Assignment:		
COUR	SE CO	NTENTS	-			-	- /					
UNIT	1	applicat Replica of Rand Sample Deviation Statistic and oth	tions o tion,Blo dom Va and Pe on, Va cal Distr er Cont	f Exp ocking priable opulat riance ributic inuou	periment g, and C e, Proba ion; Ma ion; Ma ons: Poi s Proba	tal des onfound bility, l easure o Measur isson, C bility D	ign, Basic P ding; Guideline Density Functi of Central Ten es of Variab auss, Normal, Distributions (t-	rinciple es for De on, Cur dency: ility; C Log Ne Distribu	y of Experime s: Randomisat esigning Experi mulative Distri Mean Median, concept of Co ormal, & Weib ution, Chi-squa ability Plots, C	ion, Repetiti iments; Conce bution Functi Mode, Stand nfidence Lev oull Distributi red Distributi		

Size.

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

Syllabus : M. Tech (Manufacturing Engineering) Semester B

1	SEMESIER D							
UNIT 2	Experimental Design: Classical Experiments, Terminology: Factors, Levels, Interactions, Treatment Combination; Completely Randomised Design, Randomised Block Design, Latin Square Designs; Factorial Experimental Designs, Two-level Experimental Designs for Two Factors & Three Factors; Three-level Experimental Designs for Two Factors & Three Factors, Factor Interactions, Fractional Factorial Design, Saturated Designs, Central Composite Designs.							
UNIT 3	Analysis and Interpretation Methods: Measures of Variability, Ranking Method, Column Effect Method & Plotting Method, Analysis of Variance (ANOVA) in Factorial Experiments: YATE's algorithm for ANOVA, Regression analysis, Fitting Regression Models: Linear Regression Models, Hypothesis Testing in Multiple Regression, Confidence Intervals in Multiple Regression, Prediction of New Response Observations, Regression Model Diagnostics, Testing for Lack of Fit, and Model Adequacy Checking.							
UNIT 4	Response Surface Methods and Designs: Introduction to Response Surface Methodology, The Method of Steepest Ascent, Analysis of a First & Second Order Response Surfaces, Experimental Designs for Fitting Response Surfaces: Designs for Fitting the First & Second Order Models.							
UNIT 5	Quality by Experimental Design: Quality, Western and Taguchi's Quality Philosophy, Elements of Cost, Noise Factors Causes of Variation, Quadratic Loss Function & Variations of Quadratic Loss Function, Linear graphs and Interaction assignment, Types of Orthogonal Arrays, Selection of Standard Orthogonal Arrays, Evaluation of Sensitivity to Noise, Signal to Noise Ratios for Static & Dynamic Problems; Robust Design: Steps in Robust Design, Parameter Design and Tolerance Design, Reliability Improvement through Experiments.							
Text Books								
••••	D. C., <i>Design and Analysis of Experiments</i> . 8 th Ed., John Wiley and Sons, Inc., Jersey, USA, 2013.							
Madhav S. Pha	adke, <i>Quality Engineering using Robust Design</i> , 1 st Ed., Pearson Education, 2008.							
Sheldon M. Ro Elsevier, 2009	oss, Introduction to Probability and Statistics for Engineers and Scientists, 4 th Ed.,							
Reference Bo	oks:							
	elvamuthu and Dipayan Das, Introduction to Statistical Methods, Design of Experiments Quality Control, Springer Nature Singapore Pte Ltd., 2018.							
A. M. Dean an Publishing, 20	d Voss D. T., <i>Design and Analysis of Experiments</i> , 2 nd Ed., Springer International 17.							
J J	, Design of Experiments using the Taguchi Approach: 16 Steps to Product and vement, John Wiley & Sons, 2001.							

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS : M. TECH (MANUFACTURING ENGINEERING) SEMESTER B

Semester- B(Elective-II) ME 82701: MECHATRONICS AND AUTOMATION

PERIOD PER WEEK			CH	REDI	тѕ		MA	XIMU	M MARKS		
L	Р	Tu	Т	Р	Tu]	THEORY	PF	RACTICAL	TOTAL MARKS	-
03	00	00	03	-	-	CW 30	END SEM 70	SW -	END SEM -	10 0	
COU OBJE	RSE CCTIVE	L					fundamenta ces used in ind		l vledge of me automation.	v	ar
COUI OUT	RSE COMES	5	On s	succes	ssful co	mpletic	on of the cours	e, the s	tudent should b	be able-	
CO 1	O 1 To comprehend the basics of electronics and place of mechatronics in manufacturi products, and design.										in
CO 2		evelop the	e profic	iency	in the	differe	nt types of fe	edback	devices such	as sensors	ar
CO 3	To ga	in the kno	owledge	e of va	arious n	nicropro	ocessor and mi	icro-co	ntrollers.		
CO 4	To co etc.	mprehend	the dif	ferent	types o	of electro	o-mechanical s	systems	such as motors	s, bearings, c	an
CO 5	To ga	in the kno	owledge	e of di	fferent	types o	f electro-hydra	aulic an	d electro-pneu	matics syste	m
CO-P	O Mapp	oing									
Cour	rse Outo	comes		PO1			PO2		Р	03	
	CO1			2			2		1		
	CO2			2			1		1		
	CO3			2			2		2		
	CO4			2			1		3		
COLI	CO5			2			2			1	
COUP	KSE AS						sed as following	ng:			
Theory	/ paper	End Se	emester	Exam	1: 70 Ma	arks					
							s (Two mid-t ity: 5 Marks)	erm tes	sts:15 Marks,	Assignment	::5
COUF	RSE CO	NTENT	S								
UNIT	1		, Review						in Manufacturin Loop and Close	•	
UNIT	2	Perform Fluid P Signal	nance T ressure,	ermin Temp ng, S	ology, l perature ervo Sy	Displace Sensors stems; l	ement, Positior s, Light Sensor	n and P s, Selec	on of Sensors a roximity, Veloc tion of Sensors ces, Signal Pro	city and Mo , Micro-Sen	tio soi
UNIT	3						cessors, Micro-	control	ers, PID Contro	ollers and PL	C

SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE

Syllabus : M. Tech (Manufacturing Engineering) Semester B

UNIT 4	Electro-Mechanical System: Drives and Their Controlling: AC Motors, DC Motors, Stepper Motors, Servo Motors; Ball Screws, Linear Motion Bearings, Cams, Systems Controlled by Camshafts, Electronic Cams, Indexing Mechanisms, Tool Magazines, and Transfer Systems.
UNIT 5	Electro-Hydraulic System and Electro-Pneumatic System: Electro-Hydraulic System: Hydraulic Systems: Flow, Pressure and Direction Control Valves, Actuators, and Supporting Elements, Hydraulic Power Packs, Pumps, Design of Hydraulic Circuits; Electro-Pneumatic System: Pneumatics: Production, Distribution and Conditioning of Compressed Air, SystemComponents and Graphic Representations, Design of Systems.

Text Books

W. Bolton, *Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering*, 5th Ed., Pearson Publishers, 2011.

Alciatore and Histand, Introduction to Mechatronics & Measurement Systems, 4th Ed., McGraw Hill Education, 2017.

S. R. Deb and Sankha Deb, *Robotics Technology and Flexible Automation*, 2nd Ed., TataMcGraw-Hill, New Delhi, 2017.

Reference Books:

Thomas O. Boucher, Computer Automation in Manufacturing - An Introduction, Springer, 1996.

HMT Ltd., Mechatronics, Tata Mcgraw-Hill, New Delhi, 2017.

Lawrence J. Kamm, Understanding Electro-Mechanical Engineering, an Introduction toMechatronics, Wiley-Blackwell, 2015.

P. K. Ghosh and P.R. Sridhar, *Introduction to Microprocessors for Engineers and Scientists*,(0000 to 8085)", 2nd Ed., Prentice Hall, 2004.

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS: M. TECH (MANUFACTURING ENGINEERING)

SEMESTER B

IP 82851: Virtual Prototyping and Manufacturing Simulation Lab List of Experiments

- 1. To Study Rapid Prototyping and Tooling
- 2. To Study Layered Manufacturing (LM) Processes
- 3. To Study Laminated Object Manufacturing (LOM)
- 4. To Study conversion of CAD to STL file
- 5. To Study and demonstration of 3D printing of a given object

Books & References Recommended:

- C. K. Chua, K. F. Leong, and C. S. Lim, *Rapid prototyping: Principles and applications*, 3rd Ed., World Scientific Publishers, 2010.
- 2. A. Gebhardt, Rapid prototyping, Hanser Gardener Publications, 2003.
- 3. Chua Chee Kai and Leong Kah Fai, *Rapid Prototyping: Principles & Applications*, World Scientific, 2003.
- 4. Ian Gibson, David W Rosen, Brent Stucker, *Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing*, Springer, 2010.
- 5. Ali K. Kamrani, Emand Abou el Nasr, Rapid Prototyping: Theory & Practice, Springer, 2006.

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING SHRI G S INSTITUTE OF TECHNOLOGY AND SCIENCE INDORE SYLLABUS: M. TECH (MANUFACTURING ENGINEERING)

SEMESTER B

IP 82852: Welding Technology Lab

List of Experiments

- 1. To prepare Lap & Butt Joint using ARC Welding as per given drawing
- 2. To prepare Lap Joint using Spot Welding for given specimens
- 3. To prepare Lap & Butt Joint using TIG Welding as per given drawing
- 4. To prepare Lap & Butt Joint using MIG Welding as per given drawing
- 5. To prepare Butt Joint using Brazing for given specimens

Books & References Recommended:

- 1. V. M. Radhakrishnan, Welding Technology and Design, New Age International Pvt. Ltd., 2008.
- 2. S. V. Nadkarni, Modern Welding Technology, Oxford IBH Publishers, 1996.
- 3. R. S. Parmar, Welding Engineering and Technology, Khanna Publishers, 2005.
