Time : 3 hours

Max Marks : 70

Q.	No.	: Question and Answer	
1	(a)	What is Rayleigh criterion to resolve two objects?	2
-	()	Defined or explained	1 mark
		Used graphical explanation of resolved/well/just	1 mark
	(b)	A glass plate shatters when excited by waves of frequency ω and a minimum	
		Suggest a method to shatter this glass when two coherent sources, each of	•
		frequency $\boldsymbol{\omega}$ is available.	2
		Superposition is mentioned	1 mark
		$(\sqrt{I_1} + \sqrt{I_2})^2 = (2\sqrt{I_0})^2 = 4I_0$ or anything similar	1 mark
	(c)	In Newton's rings experiment setup air is replaced with a liquid. If the ref	ractive indices of
		liquid and lens are equal $(n_{liquid} = n_{lens})$, explain the nature of interference	
		formula?	3
		If n_{liquid} $=$ n_{lens} , no/very weak reflected ray from air-liqui	d interface or
		1/f = 1/R = 0	2 marks
		a complete bright / dark / unclear image/pattern may occur. Exp	lained
		mathematically $(r ightarrow 0)$ or two plane surfaces, etc.	1 mark
		If $D^2 = ()/n_{liquid}$ and explained	1 mark.
	(d)	(i) Obtain an expression of intensity at an arbitrary point \boldsymbol{P} from an \boldsymbol{N}	
		diffraction grating. (ii) Discuss the position of maxima and minima as fur	ctions of grating
		element and number of slits (N) .	3+4
		Derivation done correctly with figure	2+1 marks
		Diffraction pattern explained graphically	1 mark
		derivation/conditions of max and minima	2 marks
		primary and secondary maxima discussed	1 mark
	(e)	(i) With a neat sketch explain division of wavefront. (ii) As shown in Fig. 1	
		A1 & A2 separated by a distance of 50m emit signals at 33MHz. General	*
		guided to the point X, by locking to the central maxima of the superposing	0
		antennas. By mistake, if the pilot locks to the first maxima, how much en	
		position is made along the y-direction?	2+5
		y↑ ↓	
		A2 2400m	
		Using slits and wavefront explained	2 marks
		Understanding the problem through math/graph representation	1 marks
		Pilot locks to central maxima $\Rightarrow d \sin \theta = m \lambda, \ \theta = 0$	1 mark
		First maxima $ heta=\sin^{-1}(1 imes\lambda/d)=32.91^\circpprox32^\circ$	2 marks
		y-shift, $y = L \tan \theta = 443$ m	1mark

Time : 3 hours

Max Marks : 70

Q.	No.	: Question and Answer	
2	(a)	With a neat sketch discuss components of a laser.	2
		Sketch showing all three parts with names	1 mark
		Small discussion on each component	1 mark
	(b)	How a three level laser is more efficient than a two level laser?	2
		Any good and valid discussion with life time and or efficiency of p	opulation
		inversion.	2 marks
	(c)	If 15% of the power fed at the input end of a 500m optical fiber is lost during	propagation,
		find the attenuation in dB/km .	3
		Expression, attenuation $\alpha = \frac{10}{L} \log_{10} \left(\frac{Pi}{Po} \right)$	1 mark
		parameters converted for km	1 mark
		calculation $lpha=-16.48 { m dB/km}$	1mark
	(d)	(i) With suitable diagram, describe various absorption and emission processes.	(ii) Find the
		ratio of Einstein's A and B coefficients at thermal equilibrium.	3 + 4
		diagram for all three processes	1% mark
		Explanation of all three processes	1% mark
		Explained the process with appropriate expressions	1 mark
		Obtained the ratio of A and B correctly and explained	2 marks
		Discussed A/B ratio too small to have Stimulated process	1 mark
	(e)	(i) With energy diagram explain the working of a Ruby laser. (ii) Discuss in de	etails at least
		two fiber optic sensors.	3 + 4
		Energy digram given correctly	1 mark
		Components of Ruby laser given correctly	1 mark
		Working of Ruby laser explained	1 mark
		Digram, prupose and working principle explained in each case 2	$\times 2=4$ marks

Time : 3 hours

Max Marks : 70

2 1 mark 1 mark es the sun lose 2 ½mark ½mark
1 mark 1 mark es the sun lose 2 ½mark
1 mark es the sun lose 2 ½mark
es the sun lose 2 ½mark
2 ½mark
½mark
½mark
1 mark
3
1 mark
ero mass can
1 mark
can achieve
$1 \mathrm{mark}$
ivistic relation
2 + 5
2 mark
2 mark
2 mark
1 mark
at rest. How
lify and obtain
3+4
2 mark
1 mark
2 mark
2 mark
ŗ

Time : 3 hours

Max Marks : 70

Q.	No.	: Question and Answer		
4	(a)	Find the probability in the region $\frac{a}{2} \leq x \leq a$ for a particle defined by a wave	-func	etion
		$\phi(x)=\sqrt{rac{3}{2a}}\left(1-rac{x}{a} ight),$.		2
		Defined probability = $\int \phi(x) ^2 dx$	½ r	nark
		$\int_{a}/2^{a}\frac{3}{2a}(1-x/a)^{2}dx$	½ r	nark
		Probability = $1/16$	1 n	nark
	(b)	A photon has the same momentum as that of an electron moving with a speed of $3 \times$	10^{5}	m/s.
		Find the wavelength of the photon.		2
		defined $p_{electron} = mv$, $\lambda = h/p_{photon}$ and $p_{photon} = p_{electron}$	1 r	nark
		$\lambda = 2.424$ nm	1 r	nark
	(c)	What is a well behaved wavefunction? Analyze, which of the following are well	beh	aved
		wavefunctions?		3
		$\psi_1(x) = A_1 \tan(n\pi x/L),$		
		$\psi_2(x) = A_2 \cos(n\pi x/L),$		
		$\psi_3(x)=A_3\exp(-\pi x/L).$		
		Defined all three conditions of well behaved wavefunction.		nark
		Only $\psi_2(x)$ is well behaved as it is continuous and normalizable, while		
	(-)	are not.		nark
	(d)	(i) How Planck's radiation formula resolves Ultraviolet Catastrophe? (ii) Obtain ener	~	~
		values and normalised wavefunction of a particle in a 1-dimensional box.		3+4
		Explained UV catastrophe with graph.		nark
		Discussed Plank's formula and explained the spectra in UV region		nark
		Definition of 1D potential well and obtained Eigen values E_n	2 ma	
	()	Obtained normalised Eigen functions	2 ma	
	(e)	(i) Describe Compton effect and its significance in quantum mechanics. (ii) A 5.5Me		
		ray is scattered at 60° from an electron. Find the energy of the scattered photon in N		
		Explained Compton effect		nark
		Confirmation of light as particle as significance mentioned Fractional to variable $\lambda = hc/E = 2.26 \times 10^{-13} \text{m}$		nark
		Energy to wavelength $\lambda = hc/E = 2.26 \times 10^{-13}$ m Compton wavelength shift $\lambda' = \lambda = h/(m/c)(1 - \cos 60) = 1.2 \times 10^{-12}$ m		nark nark
		Compton wavelength shift $\lambda' - \lambda = h/(m_0c)(1 - \cos 60) = 1.2 \times 10^{-12} \text{m}$ $\lambda' = 1.438 \times 10^{-12} \text{m}$		nark
		Energy of scattered photon = $E = hc/\lambda' = 0.864$ MeV		nark
		There's or properted hildron - $D = W_{\rm el} V = 0.004 {\rm MeV}$	τı	uarĸ

Time : 3 hours

Max Marks : 70

	NT	
Q.	No.	: Question and Answer
5	(a)	State or define first law of thermodynamics. 2
		Explained or defined first law in terms of Q ans W 1 mark
		Given $\Delta U = Q - W$ 1 mark
	(b)	Explain the process as depicted in the Fig. 5b where $T_H > T_C$.
		Represent a Heat Engine, mentioned 1 mark
		Mentioned II law of thd and explained process 1 mark
	(c)	Find the amount of work done by a gas (see Fig. 5c) in going from (p_1, V_1) to (p_2, V_2) in
		each paths $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} .
		HOT RESERVOIR at $T_{\rm H}$ p
		Q_H p_1 a
		$p_1 - p_2$
		Q_{c}
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		FIG. 5b FIG. 5c
		110.00
		$W_a = P\Delta V = p_1(V_2 - V_1)$, $W_b = \frac{1}{2}h(b_1 + b_2) = \frac{1}{2}(p_1 + p_2)(V_2 - V_1)$ and $W_b = \frac{1}{2}h(b_1 + b_2) = \frac{1}{2}(p_1 + p_2)(V_2 - V_1)$ and
	(1)	$W_c = p_2(V_1 - V_2)$ 1 mark each
	(d)	What is absolute zero temperature? At absolute zero, what happens to entropy, volume and
		mass. 2+5
		0 Kelvin or -273.15°C and explain 2 marks
		Discussed Zeroth law of Thermodynamics. $S = k \ln W$ or S is a measure of
		disorder, hence S will be zero 3 marks
		Volume of all gasses $\rightarrow 0$ 1 mark
		since volume zero, density will be infinity, 1 mark
	(e)	Discuss Second law of thermodynamics for a heat engine, a reversed heat engine and a re-
		versible heat engine. 7
		Discussed second law with a sketch and PV diagram 3 marks
		Diagram given and discussed whats is reversed 2 marks
		Diagram given and discussed whats is reversible 2 marks