SHRI G.S. INSTITUTE OF TECHNOLOGY & SCIENCE, INDORE Department of Information Technology

Subject Nomenclature: SOFTWARE ENGINEERING

Subject Code: IT28503
Year / Semester: B.Tech II/B
Faculty Name: Anjali Rodwal

COURSE OUTCOMES:

After completion of course, students will be able to:

- CO1 Explain various process used in SDLC and project management.
- CO2 Analyze all fact related to measurement of development of software. Estimate time, cost, efforts, team size, size of software etc.
- CO3 Determine appropriate modelling approach for software development.
- CO4 Design software as per the requirement of the end users.
- CO5 Apply standard software testing principles along with writing manual test cases.
- CO6 Describe Software Quality Assurance and its approaches.

PRE-REQUISITES: None.

Lecture No.	Date	Day	Topic	Method
1	10-Jan-25	Thursday	Introduction to Software Engineering, Characteristics & Components	Chalk and Board
2	15-Jan-25	Wednesday	Software Applications & Software Process Models	Chalk and Board
3	16-Jan-25	Thursday	Software Development Life Cycle (SDLC)	Chalk and Board
4	22-Jan-25	Wednesday	Project Management Concepts & Metrics	Chalk and Board
5	23-Jan-25	Thursday	Software Measurements, COCOMO Model	Chalk and Board
6	29-Jan-25	Wednesday	Risk Management, Scheduling Techniques (Gantt, PERT)	Chalk and Board
7	30-Jan-25	Thursday	Introduction to System, Information, and Product Engineering	Chalk and Board
8	05-Feb- 25	Wednesday	Requirements Analysis, Principles & Specification	Chalk and Board
9	06-Feb- 25	Thursday	Analysis Modelling – Data and Behavioral Modelling	Chalk and Board

Lecture No.	Date	Day	Торіс	Method
10	12-Feb- 25	Wednesday	Creating ERD and DFD	Chalk and Board
11	13-Feb- 25	Thursday	Control Flow Modelling	Chalk and Board
12	19-Feb- 25	Wednesday	Data Dictionary and Tools	Chalk and Board
13	20-Feb- 25	Thursday	Design Principles and Concepts – Cohesion & Coupling	Chalk and Board
14	26-Feb- 25	Wednesday	Functional Independence and Design Documentation	Chalk and Board
15	27-Feb- 25	Thursday	Principles of Design Specification	Chalk and Board
16	05-Mar- 25	Wednesday	Transform Mapping, Transaction Mapping	Chalk and Board
17	06-Mar- 25	Thursday	Software Modelling and UML	Chalk and Board
18	12-Mar- 25	Wednesday	Project Planning and Management Tools	Chalk and Board
19	13-Mar- 25	Thursday	Software Testing Fundamentals – Objectives and Testability	Chalk and Board
20	19-Mar- 25	Wednesday	White Box Testing – Basis Path Testing	Chalk and Board
21	20-Mar- 25	Thursday	Black Box Testing & Test Case Design	Chalk and Board
22	26-Mar- 25	Wednesday	Software Verification & Validation – Unit, Integration, Regression Testing	Chalk and Board
23	27-Mar- 25	Thursday	Alpha, Beta Testing and Testing Documentation	Chalk and Board
24	02-Apr- 25	Wednesday	Case Studies & Overview of Testing Tools (QTP, Win Runner, Load Runner, Rational Robot)	Chalk and Board
25	03-Apr- 25	Thursday	Software Quality – Concepts & SQA Activities	Chalk and Board
26	09-Apr- 25	Wednesday	Formal Approaches to SQA & Software Reliability	Chalk and Board
27	10-Apr- 25	Thursday	SCM Process – Configuration Identification, Control, Status Accounting	Chalk and Board

SHRI G.S. INSTITUTE OF TECHNOLOGY & SCIENCE, INDORE Department of Information Technology

Subject Name: Discrete Structures

Subject Code: IT28511

Year/Semester: II Year, 4th Semester

Instructor Name: Jasmeet Kaur/Akshay Gupta

Course Outcomes

CO1: Explain various types of sets, relations, functions, and algebraic structures.

CO2: Apply logic theory to determine the validity of arguments.

CO3: Apply Mathematical Induction and counting techniques to solve problems.

CO4: Apply graph theory to solve real-world problems.

CO5: Describe tree concepts, binary search trees, and spanning trees using various algorithms.

CO6: Solve recurrence relations using various techniques.

Prerequisites

Basic Mathematics, Programming Logic, Logical Reasoning

Lecture Plan

S.No	Date	Content Covered	Method
1	06/01/2025	Introduction to sets, finite/infinite sets, uncountable sets, mathematical induction	Board and Chalk
2	08/01/2025	Inclusion/exclusion, multi-sets, relational model, binary relations	Board and Chalk
3	15/01/2025	Equivalence & partial ordering relations,	Board and Chalk

		lattices, job scheduling, pigeonhole principle	
4	16/01/2025	Propositional calculus, conjunction, disjunction, negation	Board and Chalk
5	20/01/2025	Validity, consistency, computability, Russell's paradox, grammars	Board and Chalk
6	22/01/2025	Introduction to graphs, terminology, weighted graphs, multigraphs	Board and Chalk
7	23/01/2025	Paths, circuits, shortest paths, Dijkstra algorithm	Board and Chalk
8	27/01/2025	Warshall's and pruning algorithms	Board and Chalk
9	29/01/2025	Euler's path, Hamiltonian circuits, TSP, planar graphs	Board and Chalk
10	30/01/2025	Introduction to trees, rooted trees, binary search trees	Board and Chalk
11	13/02/2025	Spanning trees, prefix codes, cut-sets	Board and Chalk
12	17/02/2025	Minimal spanning tree, Kruskal's & Prim's algorithm	Board and Chalk
13	19/02/2025	Recurrence relations, recursive algorithms: introduction	Board and Chalk
14	20/02/2025	Linear recurrence with constant coefficients	Board and Chalk
15	24/02/2025	Homogeneous & particular solutions	Board and Chalk
16	27/02/2025	Generating functions method	Board and Chalk
17	03/03/2025	Introduction to groups, rings	Board and Chalk
18	05/03/2025	Integral domains and fields	Board and Chalk
19	06/03/2025	Problem-solving on sets and relations	Board and Chalk
20	10/03/2025	Numerical on logic & propositional calculus	Board and Chalk
21	12/03/2025	Graph-based problem solving	Board and Chalk

22	17/03/2025	Shortest path algorithms - numerical	Board and Chalk
23	19/03/2025	Tree traversal techniques	Board and Chalk
24	20/03/2025	Numerical on spanning trees	Board and Chalk
25	24/03/2025	Constructing recurrence relations	Board and Chalk
26	26/03/2025	Problem solving using recurrence relations	Board and Chalk
27	01/04/2025	Group theory numerical	Board and Chalk
28	03/04/2025	Revision of Units 1 & 2	Board and Chalk
29	04/04/2025	Revision of Units 3 & 4	Board and Chalk
30	04/04/2025	Practice paper discussion	Board and Chalk
31	07/04/2025	Doubt clearing session	Board and Chalk
32	09/04/2025	Quiz on Discrete Structures	Board and Chalk